ADE7758ARWZ Analog Devices Inc, ADE7758ARWZ Datasheet - Page 23

no-image

ADE7758ARWZ

Manufacturer Part Number
ADE7758ARWZ
Description
IC ENERGY METERING 3PHASE 24SOIC
Manufacturer
Analog Devices Inc
Datasheet

Specifications of ADE7758ARWZ

Input Impedance
380 KOhm
Measurement Error
0.1%
Voltage - I/o High
2.4V
Voltage - I/o Low
0.8V
Current - Supply
8mA
Voltage - Supply
4.75 V ~ 5.25 V
Operating Temperature
-40°C ~ 85°C
Mounting Type
Surface Mount
Package / Case
24-SOIC (0.300", 7.50mm Width)
Meter Type
3 Phase
Ic Function
Poly Phase Multifunction Energy Metering IC
Supply Voltage Range
4.75V To 5.25V
Operating Temperature Range
-40°C To +85°C
Digital Ic Case Style
SOIC
No. Of Pins
24
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ADE7758ARWZ
Manufacturer:
AD
Quantity:
517
Part Number:
ADE7758ARWZ
Manufacturer:
AD
Quantity:
53
Part Number:
ADE7758ARWZ
Manufacturer:
AD
Quantity:
1 000
Part Number:
ADE7758ARWZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
ADE7758ARWZRL
Manufacturer:
ADI/亚德诺
Quantity:
20 000
The sign of the register is extended in the upper 8 bits. The
timing is the same as for the current channels, as seen in Figure 40.
ZERO-CROSSING DETECTION
The ADE7758 has zero-crossing detection circuits for each of
the voltage channels (VAN, VBN, and VCN). Figure 51 shows
how the zero-cross signal is generated from the output of the
ADC of the voltage channel.
The zero-crossing interrupt is generated from the output of
LPF1. LPF1 has a single pole at 260 Hz (CLKIN = 10 MHz). As
a result, there is a phase lag between the analog input signal of
the voltage channel and the output of LPF1. The phase response
of this filter is shown in the Voltage Channel Sampling section.
The phase lag response of LPF1 results in a time delay of
approximately 1.1 ms (at 60 Hz) between the zero crossing on
the voltage inputs and the resulting zero-crossing signal. Note
that the zero-crossing signal is used for the line cycle
accumulation mode, zero-crossing interrupt, and line
period/frequency measurement.
When one phase crosses from negative to positive, the
corresponding flag in the interrupt status register (Bit 9 to
Bit 11) is set to Logic 1. An active low in the IRQ output also
appears if the corresponding ZX bit in the interrupt mask
register is set to Logic 1. Note that only zero crossing from
negative to positive generates an interrupt.
The flag in the interrupt status register is reset to 0 when the
interrupt status register with reset (RSTATUS) is read. Each
phase has its own interrupt flag and mask bit in the interrupt
register.
VAN,
VBN,
VCN
0.908
1.0
Figure 51. Zero-Crossing Detection on Voltage Channels
GAIN[6:5]
×1, ×2, ×4
PGA
24.8° @ 60Hz
REFERENCE
READ RSTATUS
ADC
f
–3dB
LPF1
= 260Hz
ANALOG VOLTAGE
WAVEFORM
(VAN, VBN, OR VCN)
DETECTOR
CROSSING
ZERO-
IRQ
LPF1
OUTPUT
Rev. D | Page 23 of 72
Zero-Crossing Timeout
Each zero-crossing detection has an associated internal timeout
register (not accessible to the user). This unsigned, 16-bit
register is decreased by 1 every 384/CLKIN seconds. The
registers are reset to a common user-programmed value, that is,
the zero-crossing timeout register (ZXTOUT[15:0], Address 0x1B),
every time a zero crossing is detected on its associated input.
The default value of ZXTOUT is 0xFFFF. If the internal register
decrements to 0 before a zero crossing at the corresponding
input is detected, it indicates an absence of a zero crossing in
the time determined by the ZXTOUT[15:0]. The ZXTOx
detection bit of the corresponding phase in the interrupt status
register is then switched on (Bit 6 to Bit 8). An active low on the
IRQ output also appears if the ZXTOx mask bit for the
corresponding phase in the interrupt mask register is set to
Logic 1.
timeout detection when the Line Voltage A stays at a fixed dc
level for more than 384/CLKIN × ZXTOUT[15:0] seconds.
PHASE COMPENSATION
When the HPF in the current channel is disabled, the phase
error between the current channel (IA, IB, or IC) and the
corresponding voltage channel (VA, VB, or VC) is negligible.
When the HPF is enabled, the current channels have phase
response (see Figure 53 through Figure 55). The phase response
is almost 0 from 45 Hz to 1 kHz. The frequency band is sufficient
for the requirements of typical energy measurement applications.
However, despite being internally phase compensated, the
ADE7758 must work with transducers that may have inherent
phase errors. For example, a current transformer (CT) with a
phase error of 0.1° to 0.3° is not uncommon. These phase errors
can vary from part to part, and they must be corrected to
perform accurate power calculations.
REGISTER VALUE
16-BIT INTERNAL
DETECTION BIT
ZXTOUT[15:0]
CHANNEL A
Figure 52
VOLTAGE
ZXTOA
Figure 52. Zero-Crossing Timeout Detection
shows the mechanism of the zero-crossing
RSTATUS
READ
ADE7758

Related parts for ADE7758ARWZ