HCPL-J312-000E Avago Technologies US Inc., HCPL-J312-000E Datasheet - Page 23

OPTOCOUPLER 1CH 2.5A 8-DIP

HCPL-J312-000E

Manufacturer Part Number
HCPL-J312-000E
Description
OPTOCOUPLER 1CH 2.5A 8-DIP
Manufacturer
Avago Technologies US Inc.
Datasheet

Specifications of HCPL-J312-000E

Output Type
Gate Driver
Package / Case
8-DIP (0.300", 7.62mm)
Voltage - Isolation
3750Vrms
Number Of Channels
1, Unidirectional
Current - Output / Channel
2.5A
Propagation Delay High - Low @ If
300ns @ 7mA ~ 16mA
Current - Dc Forward (if)
16mA
Input Type
DC
Mounting Type
Through Hole
Configuration
1 Channel
Isolation Voltage
3750 Vrms
Maximum Propagation Delay Time
500 ns
Maximum Forward Diode Voltage
1.95 V
Minimum Forward Diode Voltage
1.2 V
Maximum Reverse Diode Voltage
3 V
Maximum Forward Diode Current
25 mA
Maximum Power Dissipation
295 mW
Maximum Operating Temperature
+ 100 C
Minimum Operating Temperature
- 40 C
No. Of Channels
1
Optocoupler Output Type
Gate Drive
Input Current
16mA
Output Voltage
30V
Opto Case Style
DIP
No. Of Pins
8
Common Mode Ratio
15 KV/uS
Rohs Compliant
Yes
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant
Other names
516-1879-5
HCPL-J312-000E

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
HCPL-J312-000E
Manufacturer:
AVAGO
Quantity:
2 000
Part Number:
HCPL-J312-000E
Manufacturer:
AVAGO/安华高
Quantity:
20 000
Under Voltage Lockout Feature. (Discussion applies to
HCPL-3120, HCPL-J312, and HCNW3120)
The HCPL-3120 contains an under voltage lockout (UVLO) 
feature that is designed to protect the IGBT under fault 
conditions  which  cause  the  HCPL-3120  supply  voltage 
(equivalent  to  the  fully-charged  IGBT  gate  voltage)  to 
drop below a level necessary to keep the IGBT in a low re-
sistance state. When the HCPL-3120 output is in the high 
state and the supply voltage drops below the     HCPL-
3120  V
coupler output will go into the low state with a typical 
delay, UVLO Turn Off Delay, of 0.6 µs.
When  the  HCPL-3120  output  is  in  the  low  state  and 
the  supply  voltage  rises  above  the  HCPL-3120  V
threshold (11.0 <  V
will go into the high state (assumes LED is “ON”) with a 
typical delay, UVLO Turn On Delay of 0.8 µs.
Figure 36. Waveforms for dead time.
23
*PDD = PROPAGATION DELAY DIFFERENCE
NOTE: FOR DEAD TIME AND PDD CALCULATIONS ALL PROPAGATION
DELAYS ARE TAKEN AT THE SAME TEMPERATURE AND TEST CONDITIONS.
V
V
I
I
OUT1
OUT2
LED1
LED2
UVLO–
  threshold  (9.5 <  V
(t
PHL-
PDD* MAX
Q1 ON
Q2 OFF
t
UVLO+
t
PHL MIN
PHL MAX
HCPL-3120 fig 36
t
PLH
)
MAX
 < 13.5) the optocoupler output 
MAXIMUM DEAD TIME
(DUE TO OPTOCOUPLER)
= (t
= (t
= PDD* MAX – PDD* MIN
PHL MAX
PHL MAX
t
MIN
PLH
t
PLH MAX
UVLO– 
- t
- t
PHL MIN
PLH MIN
<  12.0)  the  opto-
) + (t
) – (t
Q1 OFF
PLH MAX
PHL MIN
Q2 ON
- t
- t
PLH MAX
PLH MIN
UVLO+
)
)
IPM Dead Time and Propagation Delay Specifications.
(Discussion applies to HCPL-3120, HCPL-J312, and
HCNW3120)
The HCPL-3120 includes a Propagation Delay Difference 
(PDD) specification intended to help designers minimize 
“dead  time”  in  their  power  inverter  designs.  Dead  time 
is the time period during which both the high and low 
side power transistors (Q1 and Q2 in Figure 25) are off. 
Any overlap in Q1 and Q2 conduction will result in large 
currents  flowing  through  the  power  devices  between 
the high and low voltage motor rails.
Figure 35. Minimum LED skew for zero dead time.
V
V
I
I
OUT1
OUT2
LED1
LED2
*PDD = PROPAGATION DELAY DIFFERENCE
NOTE: FOR PDD CALCULATIONS THE PROPAGATION DELAYS
ARE TAKEN AT THE SAME TEMPERATURE AND TEST CONDITIONS.
HCPL-3120 fig 35
PDD* MAX = (t
t
PHL MAX
Q2 OFF
Q1 ON
t
PLH MIN
PHL
- t
PLH
)
MAX
= t
Q1 OFF
Q2 ON
PHL MAX
- t
PLH MIN

Related parts for HCPL-J312-000E