AD6620S/PCB Analog Devices Inc, AD6620S/PCB Datasheet - Page 32

no-image

AD6620S/PCB

Manufacturer Part Number
AD6620S/PCB
Description
BOARD EVAL DUAL RCVR W/AD6620AS
Manufacturer
Analog Devices Inc
Datasheet

Specifications of AD6620S/PCB

Rohs Status
RoHS non-compliant
Module/board Type
Evaluation Board
For Use With/related Products
AD6620
AD6620
Read Pseudocode
int read_micro(ext_address);
main();
{
/ This code shows the reading of the NCO frequency register
using the read_micro function as defined above. The variable
address is the External Address A[2..0] and data is the value to
be placed in the external interface register. The NCO register is
located at Internal Address = 0x303.
// holding registers for NCO byte wide access data
int d3, d2, d1, d0;
// NCO frequency word (32-bits wide)
// write AMR
write_micro(7, 0x03 );
// write LAR
write_micro(6, 0x03);
/ read D[7:0] from DR0, All data is moved from the Internal
Registers to the interface registers on this access. Reading
should be initiated with a read from DR0. Therefore, DR1,
DR2 and DR3 can be read after DR0 /
d0 = read_micro(0) & 0xFF;
// read D[15:8] from DR1
d1 = read_micro(1) & 0xFF;
// read D[23:16] from DR2
d2 = read_micro(2) & 0xFF;
// read D[31:24] from DR3
d3 = read_micro(3) & 0xFF;
// DR4 is not needed because NCO_FREQ is only 32-bits
// Assemble 32-bit NCO_FREQ word from the 4 byte
components
NCO_FREQ = d0 + (d1 << 8) + (d2 << 16) + (d3 << 24);
} // end of main
/
Auto Increment Feature
To increase throughput, an auto increment feature is provided.
This feature is controlled by Bits 6 and 7 of the AMR. If these
bits are set to 00, the address remains the same after an internal
access. If set to 01, the address is incremented after a read access
has been performed. If set to 10, the address is incremented
after a write access is performed. If set to 11, the address is incre-
mented after each access, read or write. This allows the AD6620
to be initialized in a much shorter time since the access to the
LAR and AMR must occur only once to initialize or read-back
the entire device.
MICROPORT CONTROL
External reads and writes are accomplished in one of two modes
via the Microprocessor Port. The CS, RD (DS), RDY (DTACK),
WR (R/W) and MODE pins are used to control the access. The
specific function of these pins depends on whether the access is
MODE 0 or MODE 1. The Mode 1 signal names are those
listed on the pinout. The access mode is controlled by the
MODE input as described in the following sections.
MODE 0
A[2:0] (Address Lines)
D[7:0] (Data Lines)
CS (Chip Select)
RD (Read Strobe)
WR (Write Strobe)
RDY (Ready Signal)
MODE (Mode Select)
The Microport is synchronous with the master clock (CLK) of
the AD6620, but the interface is not required to be. If the speed
of the interface is significantly slower than CLK, synchronicity
should not be an issue. If the interface is relatively fast com-
pared to CLK, the user may need to synchronize the Microport
to CLK or add wait states to the controlling processor. The
timing diagrams show the relationship of the control signals to
clock and the user should use these as a guide to implement a
Microport interface.
Table XII. Microprocessor Control Signals
MODE 1
A[2:0] (Address Lines)
D[7:0] (Data Lines)
CS (Chip Select)
DS (Data Strobe)
R/W (Read/Write Select)
DTACK (Data Acknowledge)
MODE (Mode Select)

Related parts for AD6620S/PCB