ATmega16 Atmel Corporation, ATmega16 Datasheet - Page 212

no-image

ATmega16

Manufacturer Part Number
ATmega16
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega16

Flash (kbytes)
16 Kbytes
Pin Count
44
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
32
Ext Interrupts
3
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
1
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
4
Input Capture Channels
1
Pwm Channels
4
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA16
Manufacturer:
ATMEL
Quantity:
1 000
Part Number:
ATMEGA16
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega16-16AC
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega16-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega16-16AI
Manufacturer:
ATMEL
Quantity:
28
Part Number:
ATmega16-16AI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega16-16AJ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega16-16AU
Manufacturer:
ATMEL
Quantity:
537
Part Number:
ATmega16-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega16-16AUR
Manufacturer:
Encoders
Quantity:
101
Part Number:
ATmega16-16PC
Manufacturer:
ATM
Quantity:
100
Part Number:
ATmega16-16PI
Manufacturer:
RFMD
Quantity:
101
Part Number:
ATmega16-16PU
Manufacturer:
Atmel
Quantity:
140
Analog Input Circuitry
Analog Noise
Canceling Techniques
2466T–AVR–07/10
sleep modes and the user wants to perform differential conversions, the user is advised to
switch the ADC off and on after waking up from sleep to prompt an extended conversion to get a
valid result.
The Analog Input Circuitry for single ended channels is illustrated in Figure 105. An analog
source applied to ADCn is subjected to the pin capacitance and input leakage of that pin, regard-
less of whether that channel is selected as input for the ADC. When the channel is selected, the
source must drive the S/H capacitor through the series resistance (combined resistance in the
input path).
The ADC is optimized for analog signals with an output impedance of approximately 10 kΩ or
less. If such a source is used, the sampling time will be negligible. If a source with higher imped-
ance is used, the sampling time will depend on how long time the source needs to charge the
S/H capacitor, with can vary widely. The user is recommended to only use low impedant sources
with slowly varying signals, since this minimizes the required charge transfer to the S/H
capacitor.
If differential gain channels are used, the input circuitry looks somewhat different, although
source impedances of a few hundred kΩ or less is recommended.
Signal components higher than the Nyquist frequency (f
kind of channels, to avoid distortion from unpredictable signal convolution. The user is advised
to remove high frequency components with a low-pass filter before applying the signals as
inputs to the ADC.
Figure 105. Analog Input Circuitry
Digital circuitry inside and outside the device generates EMI which might affect the accuracy of
analog measurements. If conversion accuracy is critical, the noise level can be reduced by
applying the following techniques:
1. Keep analog signal paths as short as possible. Keep them well away from high-
2. The AVCC pin on the device should be connected to the digital V
3. Use the ADC noise canceler function to reduce induced noise from the CPU.
4. If any ADC port pins are used as digital outputs, it is essential that these do not
speed switching digital tracks.
via an LC network as shown in
switch while a conversion is in progress.
ADCn
I
IH
I
IL
Figure
106.
1..100 kΩ
ADC
/2) should not be present for either
C
S/H
ATmega16(L)
= 14 pF
CC
supply voltage
V
CC
/2
212

Related parts for ATmega16