ATmega16 Atmel Corporation, ATmega16 Datasheet - Page 22

no-image

ATmega16

Manufacturer Part Number
ATmega16
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega16

Flash (kbytes)
16 Kbytes
Pin Count
44
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
32
Ext Interrupts
3
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
1
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
3
Output Compare Channels
4
Input Capture Channels
1
Pwm Channels
4
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA16
Manufacturer:
ATMEL
Quantity:
1 000
Part Number:
ATMEGA16
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega16-16AC
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega16-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega16-16AI
Manufacturer:
ATMEL
Quantity:
28
Part Number:
ATmega16-16AI
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega16-16AJ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega16-16AU
Manufacturer:
ATMEL
Quantity:
537
Part Number:
ATmega16-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega16-16AUR
Manufacturer:
Encoders
Quantity:
101
Part Number:
ATmega16-16PC
Manufacturer:
ATM
Quantity:
100
Part Number:
ATmega16-16PI
Manufacturer:
RFMD
Quantity:
101
Part Number:
ATmega16-16PU
Manufacturer:
Atmel
Quantity:
140
EEPROM Write During
Power-down Sleep
Mode
Preventing EEPROM
Corruption
2466T–AVR–07/10
The next code examples show assembly and C functions for reading the EEPROM. The exam-
ples assume that interrupts are controlled so that no interrupts will occur during execution of
these functions.
When entering Power-down Sleep mode while an EEPROM write operation is active, the
EEPROM write operation will continue, and will complete before the Write Access time has
passed. However, when the write operation is completed, the Oscillator continues running, and
as a consequence, the device does not enter Power-down entirely. It is therefore recommended
to verify that the EEPROM write operation is completed before entering Power-down.
During periods of low V
too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.
An EEPROM data corruption can be caused by two situations when the voltage is too low. First,
a regular write sequence to the EEPROM requires a minimum voltage to operate correctly. Sec-
ondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.
Assembly Code Example
C Code Example
EEPROM_read:
unsigned char EEPROM_read(unsigned int uiAddress)
{
}
; Wait for completion of previous write
sbic EECR,EEWE
rjmp EEPROM_read
; Set up address (r18:r17) in address register
out
out
; Start eeprom read by writing EERE
sbi
; Read data from data register
in
ret
/* Wait for completion of previous write */
while(EECR & (1<<EEWE))
/* Set up address register */
EEAR = uiAddress;
/* Start eeprom read by writing EERE */
EECR |= (1<<EERE);
/* Return data from data register */
return EEDR;
;
EEARH, r18
EEARL, r17
EECR,EERE
r16,EEDR
CC,
the EEPROM data can be corrupted because the supply voltage is
ATmega16(L)
22

Related parts for ATmega16