ADM1064 Analog Devices, ADM1064 Datasheet - Page 23

no-image

ADM1064

Manufacturer Part Number
ADM1064
Description
Manufacturer
Analog Devices
Datasheet

Specifications of ADM1064

# Supplies Monitored
10
Volt Monitoring Accuracy
1%
# Output Drivers
10
Fet Drive/enable Output
Both
Voltage Readback
12-bit ADC
Package
40 ld LFCSP ,48 ld TQFP

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ADM1064ACPZ
Manufacturer:
AD
Quantity:
1 357
Part Number:
ADM1064ACPZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
ADM1064ASUZ
Manufacturer:
ADI
Quantity:
250
Part Number:
ADM1064ASUZ
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
ADM1064ASUZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
UPDATING THE SEQUENCING ENGINE
Sequencing engine (SE) functions are not updated in the same
way as regular configuration latches. The SE has its own dedicated
512-byte nonvolatile, electrically erasable, programmable, read-
only memory (EEPROM) for storing state definitions, providing
63 individual states, each with a 64-bit word (one state is reserved).
At power-up, the first state is loaded from the SE EEPROM into
the engine itself. When the conditions of this state are met, the
next state is loaded from the EEPROM into the engine, and so
on. The loading of each new state takes approximately 10 μs.
To alter a state, the required changes must be made directly to
the EEPROM. RAM for each state does not exist. The relevant
alterations must be made to the 64-bit word, which is then
uploaded directly to the EEPROM.
INTERNAL REGISTERS
The ADM1064 contains a large number of data registers. The
principal registers are the address pointer register and the
configuration registers.
Address Pointer Register
The address pointer register contains the address that selects
one of the other internal registers. When writing to the ADM1064,
the first byte of data is always a register address that is written
to the address pointer register.
Configuration Registers
The configuration registers provide control and configuration
for various operating parameters of the ADM1064.
EEPROM
The ADM1064 has two 512-byte cells of nonvolatile EEPROM
from Register Address 0xF800 to Register Address 0xFBFF. The
EEPROM is used for permanent storage of data that is not lost
when the ADM1064 is powered down. One EEPROM cell contains
the configuration data of the device; the other contains the state
definitions for the SE. Although referred to as read-only memory,
the EEPROM can be written to, as well as read from, using the
serial bus in exactly the same way as the other registers.
(V
POWER-UP
EEPROM
CC
> 2.5V)
M
E
E
P
R
O
L
D
CONTROLLER
Figure 30. Configuration Update Flow Diagram
D
A
A
T
DEVICE
SMBus
LATCH A
Rev. D | Page 23 of 32
M
R
A
L
D
U
P
D
The major differences between the EEPROM and other registers
are as follows:
An EEPROM location must be blank before it can be written to.
Writing to the EEPROM is slower than writing to the RAM.
Writing to the EEPROM should be restricted because it has a
The first EEPROM is split into 16 (0 to 15) pages of 32 bytes
each. Page 0 to Page 6, starting at Address 0xF800, hold the
configuration data for the applications on the ADM1064 (such
as the SFDs and PDOs). These EEPROM addresses are the same
as the RAM register addresses, prefixed by F8. Page 7 is
reserved. Page 8 to Page 15 are for customer use.
Data can be downloaded from the EEPROM to the RAM in one
of the following ways:
At power-up, when Page 0 to Page 6 are downloaded
By setting Bit 0 of the UDOWNLD register (0xD8), which
SERIAL BUS INTERFACE
The ADM1064 is controlled via the serial system management
bus (SMBus) and is connected to this bus as a slave device under
the control of a master device. It takes approximately 1 ms after
power-up for the ADM1064 to download from its EEPROM.
Therefore, access to the ADM1064 is restricted until the
download is complete.
Identifying the ADM1064 on the SMBus
The ADM1064 has a 7-bit serial bus slave address (see Table 10).
The device is powered up with a default serial bus address. The
five MSBs of the address are set to 01001; the two LSBs are
determined by the logical states of Pin A1 and Pin A0. This
allows the connection of four ADM1064s to one SMBus.
Table 10. Serial Bus Slave Address
A1 Pin
Low
Low
High
High
1
x = Read/Write bit. The address is shown only as the first 7 MSBs.
If it contains data, the data must first be erased.
limited write/cycle life of typically 10,000 write operations,
due to the usual EEPROM wear-out mechanisms.
performs a user download of Page 0 to Page 6
LATCH B
A0 Pin
Low
High
Low
High
(OV THRESHOLD
FUNCTION
ON VP1)
Hex Address
0x48
0x4A
0x4C
0x4E
7-Bit Address
0100100x
0100101x
0100110x
0100111x
ADM1064
1
1
1
1

Related parts for ADM1064