PIC16C620 Microchip Technology, PIC16C620 Datasheet - Page 12

no-image

PIC16C620

Manufacturer Part Number
PIC16C620
Description
EPROM-Based 8-Bit CMOS Microcontroller
Manufacturer
Microchip Technology
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC16C620-04/SS
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
PIC16C620-04I/P
Quantity:
8
Part Number:
PIC16C620/JW
Manufacturer:
MICROCH
Quantity:
20 000
Part Number:
PIC16C620A-04/P
Quantity:
19
Part Number:
PIC16C620A-04/P
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
PIC16C620A-04/SO
Manufacturer:
MICROCHI
Quantity:
84
Part Number:
PIC16C620A-04/SO
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
PIC16C620A-041/P
Quantity:
358
Part Number:
PIC16C620A-04I/P
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
PIC16C620A-04I/SS
Manufacturer:
Microchip Technology
Quantity:
135
Part Number:
PIC16C620A-40/P
Manufacturer:
Microchip Technology
Quantity:
135
PIC16C62X
3.1
The clock input (OSC1/CLKIN pin) is internally divided
by four to generate four non-overlapping quadrature
clocks namely Q1, Q2, Q3 and Q4. Internally, the
program counter (PC) is incremented every Q1, the
instruction is fetched from the program memory and
latched into the instruction register in Q4. The
instruction is decoded and executed during the
following Q1 through Q4. The clocks and instruction
execution flow is shown in Figure 3-2.
FIGURE 3-2:
EXAMPLE 3-1:
DS30235G-page 12
1. MOVLW 55h
2. MOVWF PORTB
3. CALL
4. BSF
All instructions are single cycle, except for any program branches. These take two cycles since the fetch
instruction is “flushed” from the pipeline while the new instruction is being fetched and then executed.
OSC2/CLKOUT
Clocking Scheme/Instruction Cycle
(RC mode)
SUB_1
PORTA, BIT3
OSC1
Q4
CLOCK/INSTRUCTION CYCLE
PC
Q2
Q3
Q1
INSTRUCTION PIPELINE FLOW
Q1
Execute INST (PC-1)
Fetch INST (PC)
Fetch 1
Q2
PC
Q3
Execute 1
Fetch 2
Q4
Preliminary
Q1
Execute INST (PC)
Execute 2
Fetch INST (PC+1)
Fetch 3
Q2
PC+1
3.2
An “Instruction Cycle” consists of four Q cycles (Q1,
Q2, Q3 and Q4). The instruction fetch and execute are
pipelined such that fetch takes one instruction cycle
while decode and execute takes another instruction
cycle. However, due to the pipelining, each instruction
effectively executes in one cycle. If an instruction
causes the program counter to change (e.g., GOTO )
then two cycles are required to complete the instruction
(Example 3-1).
A fetch cycle begins with the program counter (PC)
incrementing in Q1.
In the execution cycle, the fetched instruction is latched
into the “Instruction Register (IR)” in cycle Q1. This
instruction is then decoded and executed during the
Q2, Q3, and Q4 cycles. Data memory is read during Q2
(operand read) and written during Q4 (destination
write).
Q3
Execute 3
Fetch 4
Instruction Flow/Pipelining
Q4
Q1
Fetch SUB_1 Execute SUB_1
Execute INST (PC+1)
Fetch INST (PC+2)
Q2
Flush
1998 Microchip Technology Inc.
PC+2
Q3
Q4
Internal
phase
clock

Related parts for PIC16C620