MC68332ACEH20 Freescale Semiconductor, MC68332ACEH20 Datasheet - Page 118

IC MCU 32BIT 20MHZ 132-PQFP

MC68332ACEH20

Manufacturer Part Number
MC68332ACEH20
Description
IC MCU 32BIT 20MHZ 132-PQFP
Manufacturer
Freescale Semiconductor
Series
M683xxr
Datasheets

Specifications of MC68332ACEH20

Core Processor
CPU32
Core Size
32-Bit
Speed
20MHz
Connectivity
EBI/EMI, SCI, SPI, UART/USART
Peripherals
POR, PWM, WDT
Number Of I /o
15
Program Memory Type
ROMless
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
132-QFP
Processor Series
M683xx
Core
CPU32
Data Bus Width
32 bit
Maximum Clock Frequency
20 MHz
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Interface Type
SCI, SPI, UART
Minimum Operating Temperature
- 40 C
Controller Family/series
68K
No. Of I/o's
15
Ram Memory Size
2KB
Cpu Speed
20MHz
No. Of Timers
1
Embedded Interface Type
QSPI, SCI, UART
Digital Ic Case Style
PQFP
Rohs Compliant
Yes
Data Ram Size
2 KB
Number Of Programmable I/os
15
Number Of Timers
16
Cpu Family
68K/M683xx
Device Core
ColdFire
Device Core Size
32b
Frequency (max)
20MHz
Program Memory Size
Not Required
Total Internal Ram Size
2KB
# I/os (max)
15
Number Of Timers - General Purpose
16
Operating Supply Voltage (typ)
5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
4.5V
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
132
Package Type
PQFP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Program Memory Size
-
Data Converters
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC68332ACEH20
Manufacturer:
MOTOROLA
Quantity:
1 000
Part Number:
MC68332ACEH20
Manufacturer:
FREESCALE
Quantity:
344
Part Number:
MC68332ACEH20
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC68332ACEH20
Manufacturer:
FREESCALE
Quantity:
344
Part Number:
MC68332ACEH20
0
5.10.2.5 Background Mode Registers
5.10.2.5.1 Fault Address Register (FAR)
5.10.2.5.2 Return Program Counter (RPC)
5.10.2.5.3 Current Instruction Program Counter (PCC)
5.10.2.6 Returning from BDM
5.10.2.7 Serial Interface
5-20
BDM processing uses three special purpose registers to keep track of program context
during development. A description of each follows.
The FAR contains the address of the faulting bus cycle immediately following a bus or
address error. This address remains available until overwritten by a subsequent bus
cycle. Following a double bus fault, the FAR contains the address of the last bus cycle.
The address of the first fault (if there was one) is not visible to the user.
The RPC points to the location where fetching will commence after transition from
background mode to normal mode. This register should be accessed to change the
flow of a program under development. Changing the RPC to an odd value will cause
an address error when normal mode prefetching begins.
The PCC holds a pointer to the first word of the last instruction executed prior to tran-
sition into background mode. Due to instruction pipelining, the instruction pointed to
may not be the instruction which caused the transition. An example is a breakpoint on
a released write. The bus cycle may overlap as many as two subsequent instructions
before stalling the instruction sequencer. A breakpoint asserted during this cycle will
not be acknowledged until the end of the instruction executing at completion of the bus
cycle. PCC will contain $00000001 if BDM is entered via a double bus fault immedi-
ately out of reset.
BDM is terminated when a resume execution (GO) or call user code (CALL) command
is received. Both GO and CALL flush the instruction pipeline and refetch instructions
from the location pointed to by the RPC.
The return PC and the memory space referred to by the status register SUPV bit reflect
any changes made during BDM. FREEZE is negated prior to initiating the first
prefetch. Upon negation of FREEZE, the serial subsystem is disabled, and the signals
revert to IPIPE/IFETCH functionality.
Communication with the CPU32 during BDM occurs via a dedicated serial interface,
which shares pins with other development features. Figure 5-9 is a block diagram of
the interface. The BKPT signal becomes the serial clock (DSCLK); serial input data
(DSI) is received on IFETCH, and serial output data (DSO) is transmitted on IPIPE.
Freescale Semiconductor, Inc.
For More Information On This Product,
CENTRAL PROCESSING UNIT
Go to: www.freescale.com
USER’S MANUAL
MC68332

Related parts for MC68332ACEH20