ATMEGA644P-A15MZ Atmel, ATMEGA644P-A15MZ Datasheet - Page 31

MCU AVR 64KB FLASH 16MHZ 44QFN

ATMEGA644P-A15MZ

Manufacturer Part Number
ATMEGA644P-A15MZ
Description
MCU AVR 64KB FLASH 16MHZ 44QFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA644P-A15MZ

Package / Case
44-VQFN Exposed Pad
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Operating Temperature
-40°C ~ 125°C
Speed
16MHz
Number Of I /o
32
Eeprom Size
2K x 8
Core Processor
AVR
Program Memory Type
FLASH
Ram Size
4K x 8
Program Memory Size
64KB (64K x 8)
Data Converters
A/D 8x10b
Oscillator Type
Internal
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Connectivity
I²C, SPI, UART/USART
Core Size
8-Bit
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA644P-A15MZ
Manufacturer:
ATMEL
Quantity:
3 500
Part Number:
ATMEGA644P-A15MZ
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
7.2.2
7.2.3
7674F–AVR–09/09
Clock Startup Sequence
Clock Source Connections
Any clock source needs a sufficient V
cycles before it can be considered stable.
To ensure sufficient V
the device reset is released by all other reset sources.
describes the start conditions for the internal reset. The delay (t
Oscillator and the number of cycles in the delay is set by the SUTx and CKSELx fuse bits. The
selectable delays are shown in
dependent as shown in
Table 7-2.
Main purpose of the delay is to keep the AVR in reset until it is supplied with minimum Vcc. The
delay will not monitor the actual voltage and it will be required to select a delay longer than the
Vcc rise time. If this is not possible, an internal or external Brown-Out Detection circuit should be
used. A BOD circuit will ensure sufficient Vcc before it releases the reset, and the time-out delay
can be disabled. Disabling the time-out delay without utilizing a Brown-Out Detection circuit is
not recommended.
The oscillator is required to oscillate for a minimum number of cycles before the clock is consid-
ered stable. An internal ripple counter monitors the oscillator output clock, and keeps the internal
reset active for a given number of clock cycles. The reset is then released and the device will
start to execute. The recommended oscillator start-up time is dependent on the clock type, and
varies from 6 cycles for an externally applied clock to 32K cycles for a low frequency crystal.
The start-up sequence for the clock includes both the time-out delay and the start-up time when
the device starts up from reset. When starting up from Power-save or Power-down mode, Vcc is
assumed to be at a sufficient level and only the start-up time is included.
The pins XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which
can be configured for use as an On-chip Oscillator, as shown in
quartz crystal or a ceramic resonator may be used.
C1 and C2 should always be equal for both crystals and resonators. The optimal value of the
capacitors depends on the crystal or resonator in use, the amount of stray capacitance, and the
electromagnetic noise of the environment. For ceramic resonators, the capacitor values given by
the manufacturer should be used.
Typ Time-out (V
4.1 ms
65 ms
0 ms
Number of Watchdog Oscillator Cycles
CC
CC
= 5.0V)
Section 27. “ATmega644P Typical Characteristics” on page
, the device issues an internal reset with a time-out delay (t
Table
CC
Typ Time-out (V
7-2. The frequency of the Watchdog Oscillator is voltage
to start oscillating and a minimum number of oscillating
4.3 ms
69 ms
0 ms
ATmega164P/324P/644P
CC
= 3.0V)
“On-chip Debug System” on page 45
TOUT
Figure 7-2 on page
) is timed from the Watchdog
Number of Cycles
8K (8,192)
512
0
338.
32. Either a
TOUT
) after
31

Related parts for ATMEGA644P-A15MZ