S9S08SG16E1CTL Freescale Semiconductor, S9S08SG16E1CTL Datasheet - Page 164

no-image

S9S08SG16E1CTL

Manufacturer Part Number
S9S08SG16E1CTL
Description
MCU 16K FLASH 28-TSSOP
Manufacturer
Freescale Semiconductor
Series
HCS08r
Datasheet

Specifications of S9S08SG16E1CTL

Core Processor
HCS08
Core Size
8-Bit
Speed
40MHz
Connectivity
I²C, LIN, SCI, SPI
Peripherals
LVD, POR, PWM, WDT
Number Of I /o
22
Program Memory Size
16KB (16K x 8)
Program Memory Type
FLASH
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 16x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-TSSOP
Processor Series
S08SG
Core
HCS08
Data Bus Width
8 bit
Mounting Style
SMD/SMT
3rd Party Development Tools
EWS08
Development Tools By Supplier
DEMO9S08SG32, DEMO9S08SG32AUTO, DEMO9S08SG8, DEMO9S08SG8AUTO
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
S9S08SG16E1CTL
Manufacturer:
FREESCALE
Quantity:
73 400
Part Number:
S9S08SG16E1CTL
Manufacturer:
FREESCALE
Quantity:
73 400
Company:
Part Number:
S9S08SG16E1CTL
Quantity:
1 397
Part Number:
S9S08SG16E1CTLR
Manufacturer:
FREESCALE
Quantity:
7 500
Chapter 10 Inter-Integrated Circuit (S08IICV2)
the transition from master to slave mode does not generate a stop condition. Meanwhile, a status bit is set
by hardware to indicate loss of arbitration.
10.4.1.7
Because wire-AND logic is performed on the SCL line, a high-to-low transition on the SCL line affects all
the devices connected on the bus. The devices start counting their low period and after a device’s clock has
gone low, it holds the SCL line low until the clock high state is reached. However, the change of low to
high in this device clock may not change the state of the SCL line if another device clock is still within its
low period. Therefore, synchronized clock SCL is held low by the device with the longest low period.
Devices with shorter low periods enter a high wait state during this time (see
devices concerned have counted off their low period, the synchronized clock SCL line is released and
pulled high. There is then no difference between the device clocks and the state of the SCL line and all the
devices start counting their high periods. The first device to complete its high period pulls the SCL line
low again.
10.4.1.8
The clock synchronization mechanism can be used as a handshake in data transfer. Slave devices may hold
the SCL low after completion of one byte transfer (9 bits). In such a case, it halts the bus clock and forces
the master clock into wait states until the slave releases the SCL line.
10.4.1.9
The clock synchronization mechanism can be used by slaves to slow down the bit rate of a transfer. After
the master has driven SCL low the slave can drive SCL low for the required period and then release it. If
the slave SCL low period is greater than the master SCL low period then the resulting SCL bus signal low
period is stretched.
164
SCL1
SCL2
SCL
Clock Synchronization
Handshaking
Clock Stretching
Internal Counter Reset
Figure 10-10. IIC Clock Synchronization
MC9S08SG32 Data Sheet, Rev. 8
Delay
Start Counting High Period
Figure
Freescale Semiconductor
10-10). When all

Related parts for S9S08SG16E1CTL