MCP6V06-E/SN Microchip Technology, MCP6V06-E/SN Datasheet - Page 26

no-image

MCP6V06-E/SN

Manufacturer Part Number
MCP6V06-E/SN
Description
IC OPAMP AUTO-ZERO SNGL 8SOIC
Manufacturer
Microchip Technology
Datasheets

Specifications of MCP6V06-E/SN

Slew Rate
0.5 V/µs
Amplifier Type
Chopper (Zero-Drift)
Number Of Circuits
1
Output Type
Rail-to-Rail
Gain Bandwidth Product
1.3MHz
Current - Input Bias
6pA
Voltage - Input Offset
3µV
Current - Supply
300µA
Current - Output / Channel
22mA
Voltage - Supply, Single/dual (±)
1.8 V ~ 5.5 V
Operating Temperature
-40°C ~ 125°C
Mounting Type
Surface Mount
Package / Case
8-SOIC (3.9mm Width)
Op Amp Type
Unity Gain Stable
No. Of Amplifiers
1
Bandwidth
1.3MHz
Supply Voltage Range
1.8V To 5.5V
Amplifier Case Style
SOIC
No. Of Pins
8
Number Of Channels
1
Voltage Gain Db
158 dB
Common Mode Rejection Ratio (min)
120 dB
Input Offset Voltage
0.003 mV
Operating Supply Voltage
3 V, 5 V
Maximum Operating Temperature
+ 125 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
-3db Bandwidth
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MCP6V06-E/SN
Manufacturer:
MICROCHIP
Quantity:
12 000
MCP6V06/7/8
4.3.8.6
DC crosstalk causes offsets that appear as a larger
input offset voltage. Common causes include:
• Common mode noise (remote sensors)
• Ground loops (current return paths)
• Power supply coupling
Interference from the mains (usually 50 Hz or 60 Hz),
and other AC sources, can also affect the DC perfor-
mance. Non-linear distortion can convert these signals
to multiple tones, included a DC shift in voltage. When
the signal is sampled by an ADC, these AC signals can
also be aliased to DC, causing an apparent shift in
offset.
To reduce interference:
4.3.8.7
Keep the resistances seen by the input pins as small
and as near to equal as possible to minimize bias cur-
rent related offsets.
Make the (trace) capacitances seen by the input pins
small and equal. This is helpful in minimizing switching
glitch-induced offset voltages.
Bending a coax cable with a radius that is too small
causes a small voltage drop to appear on the center or
(the tribo-electric effect). Make sure the bending radius
is large enough to keep the conductors and insulation
in full contact.
Mechanical stresses can make some capacitor types
(such as ceramic) to output small voltages. Use more
appropriate capacitor types in the signal path and
minimize mechanical stresses and vibration.
Humidity can cause electro-chemical potential voltages
to appear in a circuit. Proper PCB cleaning helps, as
does the use of encapsulants.
DS22093A-page 26
- Keep traces and wires as short as possible
- Use shielding (e.g., encapsulant)
- Use ground plane (at least a star ground)
- Place the input signal source near to the DUT
- Use good PCB layout techniques
- Use a separate power supply filter (bypass
capacitors) for these auto-zeroed op amps
Crosstalk
Miscellaneous Effects
4.4
4.4.1
Many sensors are configured as Wheatstone bridges.
Strain gauges and pressure sensors are two common
examples. These signals can be small and the
common mode noise large. Amplifier designs with high
differential gain are desirable.
Figure 4-13
bridge with a minimum of components. Because the
circuit is not symmetric, the ADC input is single ended,
and there is a minimum of filtering, the CMRR is good
enough for moderate common mode noise.
FIGURE 4-13:
Figure 4-14
Wheatstone bridges. This circuit is symmetric and has
high CMRR. Using a differential input to the ADC helps
with the CMRR.
FIGURE 4-14:
R R
R R
R R
R R
V
Typical Applications
DD
WHEATSTONE BRIDGE
shows how to interface to a Wheatstone
shows a higher performance circuit for
10 nF
10 nF
V
DD
0.2R
0.2R
Simple Design.
High Performance Design.
© 2008 Microchip Technology Inc.
1 µF
200Ω
200Ω
200 Ω
200 Ω
0.01C
100R
MCP6V06
20 kΩ
20 kΩ
3 kΩ
1 µF
1 µF
3 kΩ
3 kΩ
½ MCP6V07
½ MCP6V07
ADC
V
DD
ADC
V
DD

Related parts for MCP6V06-E/SN