AFS600-FGG256 Actel, AFS600-FGG256 Datasheet - Page 101

FPGA - Field Programmable Gate Array 600K System Gates

AFS600-FGG256

Manufacturer Part Number
AFS600-FGG256
Description
FPGA - Field Programmable Gate Array 600K System Gates
Manufacturer
Actel
Datasheet

Specifications of AFS600-FGG256

Processor Series
AFS600
Core
IP Core
Maximum Operating Frequency
1098.9 MHz
Number Of Programmable I/os
119
Data Ram Size
110592
Supply Voltage (max)
1.575 V
Maximum Operating Temperature
+ 70 C
Minimum Operating Temperature
0 C
Development Tools By Supplier
AFS-Eval-Kit, AFS-BRD600, FlashPro 3, FlashPro Lite, Silicon-Explorer II, Silicon-Sculptor 3, SI-EX-TCA
Mounting Style
SMD/SMT
Supply Voltage (min)
1.425 V
Number Of Gates
600 K
Package / Case
FPBGA-256
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AFS600-FGG256
Manufacturer:
Actel
Quantity:
135
Part Number:
AFS600-FGG256
Manufacturer:
Microsemi SoC
Quantity:
10 000
Part Number:
AFS600-FGG256
Manufacturer:
ACTEL/爱特
Quantity:
20 000
Part Number:
AFS600-FGG256I
Manufacturer:
Microsemi SoC
Quantity:
10 000
Part Number:
AFS600-FGG256K
Manufacturer:
Microsemi SoC
Quantity:
10 000
Figure 2-66 • Analog Quad
Off-Chip
On-Chip
Pads
The third part of the Analog Quad is called the Gate Driver Block, and its output pin is named AG. This
section is used to drive an external FET. There are two modes available: a High Current Drive mode and
a Current Source Control mode. Both negative and positive voltage polarities are available, and in the
current source control mode, four different current levels are available.
The fourth section of the Analog Quad is called the Temperature Monitor Block, and its input pin name is
AT. This block is similar to the Voltage Monitor Block, except that it has an additional function: it can be
used to monitor the temperature of an external diode-connected transistor. It has a modified prescaler
and is limited to positive voltages only.
The Analog Quad can be configured during design time by Actel Libero IDE; however, the ACM can be
used to change the parameters of any of these I/Os during runtime. This type of change is referred to as
a context switch. The Analog Quad is a modular structure that is replicated to generate the analog I/O
resources. Each Fusion device supports between 5 and 10 Analog Quads.
The analog pads are numbered to clearly identify both the type of pad (voltage, current, gate driver, or
temperature pad) and its corresponding Analog Quad (AV0, AC0, AG0, AT0, AV1, …, AC9, AG9, and
AT9). There are three types of input pads (AVx, ACx, and ATx) and one type of analog output pad (AGx).
Since there can be up to 10 Analog Quads on a device, there can be a maximum of 30 analog input pads
and 10 analog output pads.
AV
Digital
Prescaler
Input
Monitor Block
Voltage
(DAVOUTx)
To FPGA
To Analog MUX
Monitor/Instr
AC
Amplifier
Digital
Prescaler
Current
Input
Monitor Block
(DACOUTx)
Current
To FPGA
Analog Quad
To Analog MUX
R e v i s i o n 1
From FPGA
Gate Driver
MOSFET
(GDONx)
Power
AG
Driver
Gate
Actel Fusion Family of Mixed Signal FPGAs
AT
Temperature
Digital
Input
Prescaler
Monitor
Monitor Block
Temperature
(DATOUTx)
To FPGA
To Analog MUX
2- 85

Related parts for AFS600-FGG256