EVL90WADP-LLCSR STMicroelectronics, EVL90WADP-LLCSR Datasheet - Page 20

EVAL BOARD PORTABLE PWR SUPPLY

EVL90WADP-LLCSR

Manufacturer Part Number
EVL90WADP-LLCSR
Description
EVAL BOARD PORTABLE PWR SUPPLY
Manufacturer
STMicroelectronics
Type
Power Factor Correctionr

Specifications of EVL90WADP-LLCSR

Main Purpose
AC/DC, Primary and Secondary Side with PFC
Outputs And Type
1, Isolated
Power - Output
90W
Voltage - Output
19V
Current - Output
4.75A
Voltage - Input
90 ~ 264VAC
Regulator Topology
Boost
Frequency - Switching
130kHz
Board Type
Fully Populated
Utilized Ic / Part
L6563H, L6599A, SRK2000
Input Voltage
90 V to 264 V
Output Voltage
19 V
Dimensions
65 mm x 155 mm
Product
Power Management Modules
Supply Current
4.75 A
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With/related Products
L6563H, L6599A, SRK2000
Other names
497-10377
Application information
7.2
20/36
Figure 23. Oscillator waveforms and their relationship with gate-driving signals
In
signal, as well as the swinging node of the half-bridge leg (HB) is shown. Note that the low-
side gate-drive is turned on while the oscillator's triangle is ramping up and the high-side
gate-drive is turned on while the triangle is ramping down. In this way, at start-up, or as the
IC resumes switching during burst-mode operation, the low-side MOSFET will be switched
on first to charge the bootstrap capacitor. As a result, the bootstrap capacitor will always be
charged and ready to supply the high-side floating driver.
Operation at no load or very light load
When the resonant half-bridge is lightly loaded or unloaded at all, its switching frequency will
be at its maximum value. To keep the output voltage under control in these conditions and to
avoid losing soft-switching, there must be some significant residual current flowing through
the transformer's magnetizing inductance. This current, however, produces some
associated losses that prevent converter's no-load consumption from achieving very low
values.
To overcome this issue, the L6599A enables the designer to make the converter operate
intermittently (burst-mode operation), with a series of a few switching cycles spaced out by
long idle periods where both MOSFETs are in OFF-state, so that the average switching
frequency can be substantially reduced. As a result, the average value of the residual
magnetizing current and the associated losses will be considerably cut down, thus
facilitating the converter to comply with energy saving recommendations.
The L6599A can be operated in burst-mode by using pin 5 (STBY): if the voltage applied to
this pin falls below 1.24 V the IC will enter an idle state where both gate-drive outputs are
low, the oscillator is stopped, the soft-start capacitor CSS keeps its charge and only the 2 V
reference at RFmin pin stays alive to minimize IC's consumption and Vcc capacitor's
discharge. The IC will resume normal operation as the voltage on the pin exceeds 1.24 V by
50 mV.
To implement burst-mode operation the voltage applied to the STBY pin needs to be related
to the feedback loop.
input voltage range (e.g. when there is a PFC front-end).
Figure 23
the timing relationship between the oscillator waveform and the gate-drive
Figure 24
Doc ID 15308 Rev 5
a shows the simplest implementation, suitable with a narrow
L6599A

Related parts for EVL90WADP-LLCSR