AD9380KSTZ-150 Analog Devices Inc, AD9380KSTZ-150 Datasheet - Page 12

no-image

AD9380KSTZ-150

Manufacturer Part Number
AD9380KSTZ-150
Description
IC,TV/VIDEO CIRCUIT,Video Interface Circuit,CMOS,QFP,100PIN,PLASTIC
Manufacturer
Analog Devices Inc
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AD9380KSTZ-150
Manufacturer:
AD
Quantity:
3 100
Part Number:
AD9380KSTZ-150
Manufacturer:
ADI
Quantity:
105
Part Number:
AD9380KSTZ-150
Manufacturer:
ADI/亚德诺
Quantity:
20 000
AD9380
DESIGN GUIDE
GENERAL DESCRIPTION
The AD9380 is a fully integrated solution for capturing analog
RGB or YUV signals and digitizing them for display on flat
panel monitors, projectors, or plasma display panels (PDPs).
In addition, the AD9380 has a digital interface for receiving
DVI/HDMI signals and is capable of decoding HDCP-
encrypted signals through connections to an internal EEPROM.
The circuit is ideal for providing an interface for HDTV
monitors or as the front end to high performance video scan
converters.
Implemented in a high performance CMOS process, the
interface can capture signals with pixel rates of up to 150 MHz.
The AD9380 includes all necessary input buffering, signal dc
restoration (clamping), offset and gain (brightness and contrast)
adjustment, pixel clock generation, sampling phase control, and
output data formatting. Included in the output formatting is a
color space converter (CSC), which accommodates any input
color space and can output any color space. All controls are
programmable via a 2-wire serial interface. Full integration of
these sensitive analog functions makes system design straight-
forward and less sensitive to the physical and electrical
environments.
DIGITAL INPUTS
All digital control inputs (HSYNC, VSYNC, and I
AD9380 operate to 3.3 V CMOS levels. In addition, all digital
inputs, except the TMDS (HDMI/DVI) inputs, are 5 V tolerant.
(Applying 5 V to them does not cause any damage.) TMDS
inputs (Rx0+/Rx0−, Rx1+/Rx1−, Rx2+/Rx2−, and RxC+/RxC−)
must maintain a 100 Ω differential impedance (through proper
PCB layout) from the connector to the input where they are
internally terminated (50 Ω to 3.3 V). If additional ESD
protection is desired, use of a California Micro Devices (CMD)
CM1213 series low capacitance ESD protection (among others)
offers 8 kV of protection to the HDMI TMDS lines.
ANALOG INPUT SIGNAL HANDLING
The AD9380 has six high impedance analog input pins for the
red, green, and blue channels. They accommodate signals
ranging from 0.5 V p-p to 1.0 V p-p.
Signals are typically brought onto the interface board via a
DVI-I connector, a 15-pin D connector, or RCA-type
connectors. The AD9380 should be located as close as practical
to the input connector. Signals should be routed via 75 Ω
matched impedance traces to the IC input pins.
At the input of the AD9380, the signal should be resistively
terminated (75 Ω to the signal ground return) and capacitively
coupled to the AD9380 inputs through 47 nF capacitors. These
capacitors form part of the dc restoration circuit.
2
C) on the
Rev. 0 | Page 12 of 60
In an ideal world of perfectly matched impedances, the best
performance can be obtained with the widest possible signal
bandwidth. The ultrawide bandwidth inputs of the AD9380
(330 MHz) can track the input signal continuously as it moves
from one pixel level to the next, and digitizes the pixel during a
long, flat pixel time. In many systems, however, there are
mismatches, reflections, and noise, which can result in excessive
ringing and distortion of the input waveform. This makes it
more difficult to establish a sampling phase that provides good
image quality. It has been shown that a small inductor in series
with the input is effective in rolling off the input bandwidth
slightly, and providing a high quality signal over a wider range
of conditions. Using a Fair-Rite #2508051217Z0 high speed
signal chip bead inductor in the circuit, as shown in Figure 3,
gives good results in most applications.
HSYNC AND VSYNC INPUTS
The interface also takes a horizontal sync signal, which is
used to generate the pixel clock and clamp timing. This can
be either a sync signal directly from the graphics source or a
preprocessed TTL or CMOS level signal.
The HSYNC input includes a Schmitt trigger buffer for
immunity to noise and signals with long rise times. In typical
PC-based graphic systems, the sync signals are simply TTL-
level drivers feeding unshielded wires in the monitor cable. As
such, no termination is required.
SERIAL CONTROL PORT
The serial control port is designed for 3.3 V logic. However, it is
tolerant of 5 V logic signals.
OUTPUT SIGNAL HANDLING
The digital outputs (V
CLAMPING
RGB Clamping
To properly digitize the incoming signal, the dc offset of the
input must be adjusted to fit the range of the on-board ADC.
Most graphics systems produce RGB signals with black at
ground and white at approximately 0.75 V. However, if sync
signals are embedded in the graphics, the sync tip is often at
ground and black is at 300 mV. Then white is at approximately
1.0 V. Some common RGB line amplifier boxes use emitter-
follower buffers to split signals and increase drive capability.
This introduces a 700 mV dc offset to the signal, which must be
removed for proper capture by the AD9380.
INPUT
RGB
Figure 3. Analog Input Interface Circuit
DD
) operate from 1.8 V to 3.3 V.
75Ω
47nF
R
G
B
AIN
AIN
AIN

Related parts for AD9380KSTZ-150