AD5305 Analog Devices, AD5305 Datasheet - Page 13

no-image

AD5305

Manufacturer Part Number
AD5305
Description
Manufacturer
Analog Devices
Datasheet

Specifications of AD5305

Resolution (bits)
8bit
Dac Update Rate
167kSPS
Dac Settling Time
6µs
Max Pos Supply (v)
+5.5V
Single-supply
Yes
Dac Type
Voltage Out
Dac Input Format
I2C/Ser 2-wire,Ser

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AD53054
Manufacturer:
ADI
Quantity:
218
Part Number:
AD53054
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD53054KP
Manufacturer:
ADI
Quantity:
223
Part Number:
AD53054KPZ
Manufacturer:
ADI
Quantity:
223
Part Number:
AD53058
Manufacturer:
AD
Quantity:
885
Part Number:
AD5305ARMZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD5305BRM
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
AD5305BRMZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
TERMINOLOGY
Relative Accuracy
For the DAC, relative accuracy or integral nonlinearity (INL) is
a measure of the maximum deviation, in LSB, from a straight
line passing through the endpoints of the DAC transfer
function. Typical INL versus code plots can be seen in Figure 4,
Figure 5, and Figure 6.
Differential Nonlinearity
Differential nonlinearity (DNL) is the difference between the
measured change and the ideal 1 LSB change between any two
adjacent codes. A specified differential nonlinearity of ±1 LSB
maximum ensures monotonicity. This DAC is guaranteed
monotonic by design. Typical DNL vs. code plots can be seen in
Figure 7, Figure 8, and Figure 9.
Offset Error
This is a measure of the offset error of the DAC and the output
amplifier. It is expressed as a percentage of the full-scale range.
Gain Error
This is a measure of the span error of the DAC. It is the
deviation in slope of the actual DAC transfer characteristic from
the ideal expressed as a percentage of the full-scale range.
Offset Error Drift
This is a measure of the change in offset error with changes in
temperature. It is expressed in (ppm of full-scale range)/°C.
Gain Error Drift
This is a measure of the change in gain error with changes in
temperature. It is expressed in (ppm of full-scale range)/°C.
Power Supply Rejection Ratio (PSRR)
This indicates how the output of the DAC is affected by changes
in the supply voltage. PSRR is the ratio of the change in V
a change in V
in dB. V
DC Crosstalk
This is the dc change in the output level of one DAC at midscale
in response to a full-scale code change (all 0s to all 1s and vice
versa) and output change of another DAC. It is expressed in μV.
REF
is held at 2 V and V
DD
for full-scale output of the DAC. It is measured
DD
is varied ±10%.
OUT
Rev. G | Page 13 of 24
to
Reference Feedthrough
This is the ratio of the amplitude of the signal at the DAC
output to the reference input when the DAC output is not being
updated. It is expressed in dB.
Major-Code Transition Glitch Energy
Major-code transition glitch energy is the energy of the impulse
injected into the analog output when the code in the DAC
register changes state. It is normally specified as the area of the
glitch in nV-s and is measured when the digital code is changed
by 1 LSB at the major carry transition (011 . . . 11 to 100 . . . 00,
or 100 . . . 00 to 011 . . . 11).
Digital Feedthrough
Digital feedthrough is a measure of the impulse injected into
the analog output of the DAC from the digital input pins of the
device when the DAC output is not being updated. It is specified
in nV-s and is measured with a worst-case change on the digital
input pins, for example, from all 0s to all 1s or vice versa.
Digital Crosstalk
This is the glitch impulse transferred to the output of one DAC
at midscale in response to a full-scale code change (all 0s to all
1s and vice versa) in the input register of another DAC. It is
expressed in nV-s.
DAC-to-DAC Crosstalk
This is the glitch impulse transferred to the output of one DAC
due to a digital code change and subsequent output change of
another DAC. This includes both digital and analog crosstalk. It
is measured by loading one of the DACs with a full-scale code
change (all 0s to all 1s and vice versa) with the LDAC bit set low
and monitoring the output of another DAC. The energy of the
glitch is expressed in nV-s.
Multiplying Bandwidth
The amplifiers within the DAC have a finite bandwidth. The
multiplying bandwidth is a measure of this. A sine wave on the
reference (with full-scale code loaded to the DAC) appears on
the output. The multiplying bandwidth is the frequency at
which the output amplitude falls to 3 dB below the input.
Total Harmonic Distortion (THD)
This is the difference between an ideal sine wave and its
attenuated version using the DAC. The sine wave is used as the
reference for the DAC and the THD is a measure of the
harmonics present on the DAC output. It is measured in dB.
AD5305/AD5315/AD5325

Related parts for AD5305