HFA3863IN96 Intersil Corporation, HFA3863IN96 Datasheet - Page 14

no-image

HFA3863IN96

Manufacturer Part Number
HFA3863IN96
Description
Processor, Direct Sequence Spread Spectrum Base band Processor with Rake Receiver and Equalizer, Tape And Reel
Manufacturer
Intersil Corporation
Datasheet
30dB Pad Releasing (RF Chip High Gain):
If the AGC is not locked onto a packet and the attenuation
accumulator sum falls below the programmable threshold
(CR27), the pad will release. This is for the case where a
noise spike kicked in the 30dB pad and the pad should
release when the noise spike ends. Since the noise floor is
different for different environments, it is possible that in many
cases CR27's programmed value will be below the noise floor
and the pad will not be removed except by RXPE going low.
There is a recommended value to program CR27 (24dB), but
that depends on what environment the radio is in.
During a packet (after AGC lock), the 30dB pad is held
constant and the CR27 threshold is ignored.
RXPE low forces the pad to release whether in the middle of
a packet or not. At the end of a packet, RXPE always goes
low, forcing the pad to release.
NOTE: The attenuation accumulator is basically about equal to the
current RSSI value.
The accumulator output, after going thru the interpolator
lookup table, feeds the AGC D/A.
The pad value is programmable (CR17), but is
recommended to be set to 30dB.
ifCompDet is a signal from the HFA3783 chip. A '1' indicates
its inputs are near saturation and it needs the RF chip to
switch from high gain to low gain.
RxIfDet is the input to the HFA3863 chip connected to
ifCompDet.
rxRfAGC is the output of the HFA3863 chip and '1' is high
gain, '0' is low gain.
Demodulator Description
The receiver portion of the baseband processor, performs A/D
conversion and demodulation of the spread spectrum signal.
It correlates the PN spread symbols, then demodulates the
DBPSK, DQPSK, or CCK symbols. The demodulator
includes a frequency tracking loop that tracks and removes
the carrier frequency offset. In addition, it tracks the symbol
timing, and differentially decodes and descrambles the data.
The data is output through the RX Port to the external
processor.
The PRISM baseband processor, HFA3863 uses
differentially coherent demodulation. The HFA3863 is
designed to achieve rapid settling of the carrier tracking loop
during acquisition. Rapid phase fluctuations are handled
with a relatively wide loop bandwidth which is then stepped
down as the packet progresses. Coherent processing
improves the BER performance margin as opposed to
differentially coherent processing for the CCK data rates.
The baseband processor uses time invariant correlation to
strip the Barker code spreading and phase processing to
demodulate the resulting signals in the header and
14
HFA3863
DBPSK/DQPSK demodulation modes. These operations are
illustrated in Figure 13 which is an overall block diagram of
the receiver processor.
In processing the DBPSK header, input samples from the I
and Q A/D converters are correlated to remove the
spreading sequence. The peak position of the correlation
pulse is used to determine the symbol timing. The sample
stream is decimated to the symbol rate and corrected for
frequency offset prior to PSK demodulation. Phase errors
from the demodulator are fed to the NCO through a lead/lag
filter to maintain phase lock. The carrier is de-rotated by the
carrier tracking loop. The demodulated data is differentially
decoded and descrambled before being sent to the header
detection section.
In the 1Mbps DBPSK mode, data demodulation is performed
the same as in header processing. In the 2Mbps DQPSK
mode, the demodulator demodulates two bits per symbol
and differentially decodes these bit pairs. The bits are then
serialized and descrambled prior to being sent to the output.
In the CCK modes, the receiver removes carrier frequency
offsets and uses a bank of correlators to detect the
modulation. A biggest picker finds the largest correlation in
the I and Q Channels and determines the sign of those
correlations. For this to happen, the demodulator must know
the starting phase which is determined by referencing the
data to the last bit of the header. Each symbol demodulated
determines one or two nibbles of data. This is then serialized
and descrambled before being passed to the output.
Carrier tracking is via a lead/lag filter using a digital Costas
phase detector. Chip tracking in the CCK modes is chip
decision directed or slaved to the carrier tracking depending
on whether or not the locked oscillator
the radio.
Acquisition Description
A projected worst case time line for the acquisition of a
signal with a short preamble and header is shown. The
synchronization part of the preamble is 56 symbols long
followed by a 16-bit SFD. The receiver must monitor the
antenna to determine if a signal is present. The timeline is
broken into 10µs blocks (dwells) for the scanning process.
This length of time is necessary to allow enough integration
of the signal to make a good acquisition decision. This worst
case time line example assumes that the signal arrives part
way into the first dwell such as to just barely catch detection.
The signal and the scanning process are asynchronous and
the signal could start anywhere. In this timeline, it is
assumed that the signal is present in the first 10µs dwell, but
was missed due to power amplifier ramp up.
Meanwhile signal quality and signal frequency
measurements are made simultaneous with symbol timing
measurements. A CS1 followed by SQ1 active, or two
desing
is utilized in

Related parts for HFA3863IN96