DSPIC30F4013 Microchip Technology Inc., DSPIC30F4013 Datasheet - Page 152

no-image

DSPIC30F4013

Manufacturer Part Number
DSPIC30F4013
Description
Dspic30f3014/4013 High-performance, 16-bit Digital Signal Controllers
Manufacturer
Microchip Technology Inc.
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F4013-20E/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F4013-20I/P
Manufacturer:
Microchip
Quantity:
253
Part Number:
DSPIC30F4013-20I/P
Manufacturer:
AT
Quantity:
36
Part Number:
DSPIC30F4013-20I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F4013-20I/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
DSPIC30F4013-30I/P
Manufacturer:
Microchip
Quantity:
3 183
Part Number:
DSPIC30F4013-30I/P
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
DSPIC30F4013-30I/PT
Manufacturer:
MICROCHIP
Quantity:
1 600
Part Number:
DSPIC30F4013-30I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F4013-30I/PT
Manufacturer:
MICR0CHIP
Quantity:
20 000
Part Number:
DSPIC30F4013T-20E/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F4013T-20I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
dsPIC30F3014/4013
Any interrupt that is individually enabled (using the cor-
responding IE bit) and meets the prevailing priority level
can wake-up the processor. The processor processes
the interrupt and branch to the ISR. The Sleep Status bit
in the RCON register is set upon wake-up.
All Resets wake up the processor from Sleep mode.
Any Reset, other than POR, sets the Sleep Status bit.
In a POR, the Sleep bit is cleared.
If the Watchdog Timer is enabled, the processor wakes
up from Sleep mode upon WDT time-out. The Sleep
and WDTO Status bits are both set.
20.7.2
In Idle mode, the clock to the CPU is shut down while
peripherals keep running. Unlike Sleep mode, the clock
source remains active.
Several peripherals have a control bit in each module
that allows them to operate during Idle.
LPRC Fail-Safe Clock remains active if clock failure
detect is enabled.
The processor wakes up from Idle if at least one of the
following conditions has occurred:
• any interrupt that is individually enabled (IE bit is
• any Reset (POR, BOR, MCLR)
• WDT time-out
Upon wake-up from Idle mode, the clock is re-applied
to the CPU and instruction execution begins immedi-
ately, starting with the instruction following the PWRSAV
instruction.
DS70138E-page 150
Note:
‘1’) and meets the required priority level
In spite of various delays applied (T
T
(and PLL) may not be active at the end of
the time-out (e.g., for low frequency crys-
tals). In such cases, if FSCM is enabled, the
device detects this as a clock failure and
processes the clock failure trap, the FRC
oscillator is enabled and the user will have
to re-enable the crystal oscillator. If FSCM is
not enabled, the device simply suspends
execution of code until the clock is stable
and remain in Sleep until the oscillator clock
has started.
IDLE MODE
LOCK
and T
PWRT
), the crystal oscillator
POR
,
Any interrupt that is individually enabled (using IE bit)
and meets the prevailing priority level is able to wake
up the processor. The processor processes the inter-
rupt and branches to the ISR. The Idle Status bit in the
RCON register is set upon wake-up.
Any Reset other than POR sets the Idle Status bit. On
a POR, the Idle bit is cleared.
If Watchdog Timer is enabled, the processor wakes up
from Idle mode upon WDT time-out. The Idle and
WDTO Status bits are both set.
Unlike wake-up from Sleep, there are no time delays
involved in wake-up from Idle.
20.8
The Configuration bits in each device Configuration
register specify some of the device modes and are
programmed by a device programmer, or by using the
In-Circuit Serial Programming™ (ICSP™) feature of
the device. Each device Configuration register is a
24-bit register, but only the lower 16 bits of each regis-
ter are used to hold configuration data. There are four
device Configuration registers available to the user:
1.
2.
3.
4.
The placement of the Configuration bits is automati-
cally handled when you select the device in your device
programmer. The desired state of the Configuration bits
may be specified in the source code (dependent on the
language tool used), or through the programming
interface. After the device has been programmed, the
application software may read the Configuration bit
values through the table read instructions. For
additional information, please refer to the Programming
Specifications of the device.
Note:
FOSC (0xF80000): Oscillator Configuration
Register
FWDT (0xF80002): Watchdog Timer
Configuration Register
FBORPOR (0xF80004): BOR and POR
Configuration Register
FGS (0xF8000A): General Code Segment
Configuration Register
Device Configuration Registers
If the code protection configuration fuse
bits (FGS<GCP> and FGS<GWRP>)
have been programmed, an erase of the
entire code-protected device is only
possible at voltages V
© 2007 Microchip Technology Inc.
DD
≥ 4.5V.

Related parts for DSPIC30F4013