PIC18F26K22-I/SO Microchip Technology, PIC18F26K22-I/SO Datasheet - Page 325

IC PIC MCU 64KB FLASH 28SOIC

PIC18F26K22-I/SO

Manufacturer Part Number
PIC18F26K22-I/SO
Description
IC PIC MCU 64KB FLASH 28SOIC
Manufacturer
Microchip Technology
Series
PIC® XLP™ 18Fr

Specifications of PIC18F26K22-I/SO

Core Size
8-Bit
Program Memory Size
64KB (32K x 16)
Core Processor
PIC
Speed
64MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number Of I /o
24
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
3.8K x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 19x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-SOIC (0.300", 7.50mm Width)
Controller Family/series
PIC18
No. Of I/o's
25
Eeprom Memory Size
1KB
Ram Memory Size
3896Byte
Cpu Speed
64MHz
No. Of Timers
7
Processor Series
PIC18F
Core
PIC
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F26K22-I/SO
Manufacturer:
NXP
Quantity:
928
Part Number:
PIC18F26K22-I/SO
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
19.3.2
There is a small amount of capacitance from the
internal A/D Converter sample capacitor as well as
stray capacitance from the circuit board traces and
pads that affect the precision of capacitance
measurements.
capacitance can be taken by making sure the desired
capacitance to be measured has been removed. The
measurement is then performed using the following
steps:
1.
2.
3.
4.
5.
6.
where I is known from the current source measurement
step, t is a fixed delay and V is measured by performing
an A/D conversion.
This measured value is then stored and used for
calculations of time measurement or subtracted for
capacitance measurement. For calibration, it is
expected that the capacitance of C
approximately known. C
An iterative process may need to be used to adjust the
time, t, that the circuit is charged to obtain a reasonable
voltage reading from the A/D Converter. The value of t
may be determined by setting C
value, then solving for t. For example, if C
theoretically calculated to be 11 pF, and V is expected
to be 70% of V
or 63 s.
See Example 19-3 for a typical routine for CTMU
capacitance calibration.
 2010 Microchip Technology Inc.
Initialize the A/D Converter and the CTMU.
Set EDG1STAT (= 1).
Wait for a fixed delay of time t.
Clear EDG1STAT.
Perform an A/D conversion.
Calculate the stray and A/D sample capacitances:
C
OFFSET
CAPACITANCE CALIBRATION
(4 pF + 11 pF) • 2.31V/0.55 A
DD
, or 2.31V, then t would be:
A
=
C
measurement
STRAY
AD
is approximately 4 pF.
+
C
OFFSET
AD
=
STRAY
of
to a theoretical
I t 
 V 
the
+ C
STRAY
AD
stray
Preliminary
is
is
PIC18(L)F2X/4XK22
DS41412A-page 325

Related parts for PIC18F26K22-I/SO