ATTINY461V-10PU Atmel, ATTINY461V-10PU Datasheet - Page 126

Microcontrollers (MCU) 4kB Flash 0.256kB EEPROM 16 I/O Pins

ATTINY461V-10PU

Manufacturer Part Number
ATTINY461V-10PU
Description
Microcontrollers (MCU) 4kB Flash 0.256kB EEPROM 16 I/O Pins
Manufacturer
Atmel
Datasheets

Specifications of ATTINY461V-10PU

Processor Series
ATTINY4x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
256 B
Interface Type
2-Wire/SPI/USI
Maximum Clock Frequency
10 MHz
Number Of Programmable I/os
16
Number Of Timers
2
Operating Supply Voltage
2.7 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
Minimum Operating Temperature
- 40 C
On-chip Adc
11-ch x 10-bit
Program Memory Type
Flash
Program Memory Size
4 KB
Package / Case
PDIP-20
Package
20PDIP
Device Core
AVR
Family Name
ATtiny
Maximum Speed
10 MHz
Ram Size
256 Byte
Operating Temperature
-40 to 85 °C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATTINY461V-10PU
Manufacturer:
ATMEL
Quantity:
6 223
13.3
13.3.1
126
Functional Descriptions
ATtiny261/461/861
Three-wire Mode
The 4-bit counter can be both read and written via the data bus, and it can generate an overflow
interrupt. The data register and the counter are clocked simultaneously by the same clock
source, allowing the counter to count the number of bits received or transmitted and generate an
interrupt when the transfer is complete. Note that when an external clock source is selected the
counter counts both clock edges. In this case the counter counts the number of edges, and not
the number of bits. The clock can be selected from three different sources: The USCK pin, the
Timer/Counter0 Compare Match or from software.
The Two-wire clock control unit can generate an interrupt when a start condition is detected on
the Two-wire bus. It can also generate wait states by holding the clock pin low after a start con-
dition is detected, or after the counter overflows.
The USI Three-wire mode is compliant to the Serial Peripheral Interface (SPI) mode 0 and 1, but
does not have the slave select (SS) pin functionality. However, this feature can be implemented
in software if necessary. Pin names used by this mode are: DI, DO, and USCK.
Figure 13-2. Three-wire Mode Operation, Simplified Diagram
Figure 13-2
The two USI Data Register are interconnected in such way that after eight USCK clocks, the
data in each register are interchanged. The same clock also increments the USI’s 4-bit counter.
The Counter Overflow (interrupt) Flag, or USIOIF, can therefore be used to determine when a
transfer is completed. The clock is generated by the Master device software by toggling the
USCK pin via the PORT Register or by writing a one to the USITC bit in USICR.
SLAVE
MASTER
Bit7
Bit7
shows two USI units operating in three-wire mode, one as Master and one as Slave.
Bit6
Bit6
Bit5
Bit5
Bit4
Bit4
Bit3
Bit3
Bit2
Bit2
Bit1
Bit1
Bit0
Bit0
PORTxn
USCK
USCK
DO
DO
DI
DI
2588E–AVR–08/10

Related parts for ATTINY461V-10PU