EVAL-AD7677CBZ Analog Devices Inc, EVAL-AD7677CBZ Datasheet - Page 14

no-image

EVAL-AD7677CBZ

Manufacturer Part Number
EVAL-AD7677CBZ
Description
BOARD EVALUATION FOR AD7677
Manufacturer
Analog Devices Inc
Series
PulSAR®r
Datasheets

Specifications of EVAL-AD7677CBZ

Number Of Adc's
1
Number Of Bits
16
Sampling Rate (per Second)
1M
Data Interface
Serial, Parallel
Inputs Per Adc
1 Differential
Input Range
±VREF
Power (typ) @ Conditions
115mW @ 1MSPS
Voltage Supply Source
Analog and Digital
Operating Temperature
-40°C ~ 85°C
Utilized Ic / Part
AD7677
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
AD7677
For instance, a driver with an equivalent input noise of 2 nV/√Hz
(like the AD8021) and configured as a buffer, thus with a noise
gain of +1, the SNR degrades by only 0.07 dB with the filter in
Figure 5, and 0.27 dB without.
• The driver needs to have a THD performance suitable to
The AD8021 meets these requirements and is usually appropri-
ate for almost all applications. The AD8021 needs an external
compensation capacitor of 10 pF. This capacitor should have
good linearity as an NPO ceramic or mica type.
The AD8022 could also be used where a dual version is needed
and gain of 1 is used.
The AD8132 or the AD8138 could also be used to generate a
differential signal from a single-ended signal.
The AD829 is another alternative where high frequency (above
1 MHz) performance is not required. In gain of 1, it requires an
82 pF compensation capacitor.
The AD8610 is also another option where low bias current is
needed in low frequency applications.
Voltage Reference Input
The AD7677 uses an external 2.5 V voltage reference. The
voltage reference input REF of the AD7677 has a dynamic
input impedance. Therefore, it should be driven by a low
impedance source with an efficient decoupling between REF
and REFGND inputs. This decoupling depends on the choice
of the voltage reference, but usually consists of a 1 µF ceramic
capacitor and a low ESR tantalum capacitor connected to the
REF and REFGND inputs with minimum parasitic inductance.
47 µF is an appropriate value for the tantalum capacitor when
used with one of the recommended reference voltages:
• The low noise, low temperature drift ADR421 and AD780
• The low power ADR291 voltage reference
• The low cost AD1582 voltage reference
For applications using multiple AD7677s, it is more effective
to buffer the reference voltage with a low noise, very stable op
amp like the AD8031.
Care should also be taken with the reference temperature coeffi-
cient of the voltage reference, which directly affects the full-scale
accuracy if this parameter matters. For instance, a ± 15 ppm/°C
tempco of the reference changes the full scale by ± 1 LSB/°C.
Note that V
increased to AVDD – 1.85 V. Since the input range is defined
in terms of V
make it a ± 3 V input range with a reference voltage of 3 V. One
of the benefits here is the increased SNR obtained as a result of
this increase. The theoretical improvement as a result of this
increase in reference is 1.58 dB (20 log [3/2.5]). Due to the
theoretical quantization noise however, the observed improve-
ment is approximately 1 dB. The AD780 can be selected with a
3 V reference voltage.
that of the AD7677.
voltage references
REF
REF
, as mentioned in the specification table, could be
, this would essentially increase the range to
–14–
Power Supply
The AD7677 uses three sets of power supply pins: an analog
5 V supply AVDD, a digital 5 V core supply DVDD, and a
digital input/output interface supply OVDD. The OVDD supply
allows direct interface with any logic working between 2.7 V and
DVDD +0.3 V. To reduce the number of supplies needed, the
digital core (DVDD) can be supplied through a simple RC
filter from the analog supply as shown in Figure 5. The
AD7677 is independent of power supply sequencing once
OVDD does not exceed DVDD by more than 0.3 V, and thus
is free from supply voltage induced latchup. Additionally, it is
very insensitive to power supply variations over a wide fre-
quency range as shown in Figure 9.
POWER DISSIPATION
In Impulse Mode, the AD7677 automatically reduces its power
consumption at the end of each conversion phase. During the
acquisition phase, the operating currents are very low, which
allows a significant power saving when the conversion rate is
reduced as shown in Figure 10. This feature makes the AD7677
ideal for very low power battery applications.
It should be noted that the digital interface remains active even
during the acquisition phase. To reduce the operating digital
supply currents even further, the digital inputs need to be driven
close to the power rails (i.e., DVDD and DGND) and OVDD
should not exceed DVDD by more than 0.3 V.
100k
Figure 10. Power Dissipation vs. Sample Rate
10k
100
1M
0.1
1k
10
75
70
65
60
55
50
45
40
35
1
10
1k
Figure 9. PSRR vs. Frequency
100
10k
WARP/NORMAL
SAMPLING RATE – SPS
IMPULSE
FREQUENCY – Hz
1k
100k
10k
1M
100k
10M
1M
REV. A

Related parts for EVAL-AD7677CBZ