ATTINY261-20PU Atmel, ATTINY261-20PU Datasheet - Page 150

IC MCU AVR 2K FLASH 20MHZ 20-DIP

ATTINY261-20PU

Manufacturer Part Number
ATTINY261-20PU
Description
IC MCU AVR 2K FLASH 20MHZ 20-DIP
Manufacturer
Atmel
Series
AVR® ATtinyr
Datasheets

Specifications of ATTINY261-20PU

Core Processor
AVR
Core Size
8-Bit
Speed
20MHz
Connectivity
USI
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
16
Program Memory Size
2KB (1K x 16)
Program Memory Type
FLASH
Eeprom Size
128 x 8
Ram Size
128 x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 11x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
20-DIP (0.300", 7.62mm)
Processor Series
ATTINY2x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
128 B
Interface Type
2-Wire/SPI/USI
Maximum Clock Frequency
20 MHz
Number Of Programmable I/os
16
Number Of Timers
2
Operating Supply Voltage
2.7 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
On-chip Adc
11-ch x 10-bit
Data Rom Size
128 B
Height
4.95 mm
Length
26.92 mm
Supply Voltage (max)
5.5 V
Supply Voltage (min)
2.7 V
Width
7.11 mm
For Use With
ATSTK600 - DEV KIT FOR AVR/AVR32ATAVRBC100 - REF DESIGN KIT BATTERY CHARGER770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAGATSTK505 - ADAPTER KIT FOR 14PIN AVR MCU
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATTINY261-20PU
Manufacturer:
ATMEL
Quantity:
256
15.8
15.9
150
Analog Input Circuitry
Noise Canceling Techniques
ATtiny261/461/861
The analog input circuitry for single ended channels is illustrated in
source applied to ADCn is subjected to the pin capacitance and input leakage of that pin, regard-
less of whether that channel is selected as input for the ADC. When the channel is selected, the
source must drive the S/H capacitor through the series resistance (combined resistance in the
input path).
Figure 15-8. Analog Input Circuitry
The capacitor in
and any stray or parasitic capacitance inside the device. The value given is worst case.
The ADC is optimized for analog signals with an output impedance of approximately 10 kΩ or
less. If such a source is used, the sampling time will be negligible. If a source with higher imped-
ance is used, the sampling time will depend on how long time the source needs to charge the
S/H capacitor, with can vary widely. The user is recommended to only use low impedant sources
with slowly varying signals, since this minimizes the required charge transfer to the S/H
capacitor.
Signal components higher than the Nyquist frequency (f
distortion from unpredictable signal convolution. The user is advised to remove high frequency
components with a low-pass filter before applying the signals as inputs to the ADC.
Digital circuitry inside and outside the device generates EMI which might affect the accuracy of
analog measurements. When conversion accuracy is critical, the noise level can be reduced by
applying the following techniques:
Where high ADC accuracy is required it is recommended to use ADC Noise Reduction Mode, as
described in
is above 1 MHz, or when the ADC is used for reading the internal temperature sensor, as
• Keep analog signal paths as short as possible.
• Make sure analog tracks run over the analog ground plane.
• Keep analog tracks well away from high-speed switching digital tracks.
• If any port pin is used as a digital output, it mustn’t switch while a conversion is in progress.
• Place bypass capacitors as close to V
ADCn
Section 15.7 on page
Figure 15-8
depicts the total capacitance, including the sample/hold capacitor
I
IH
149. This is especially the case when system clock frequency
I
IL
CC
and GND pins as possible.
1..100 kΩ
ADC
/2) should not be present to avoid
C
S/H
= 14 pF
Figure 15-8
V
CC
/2
2588E–AVR–08/10
An analog

Related parts for ATTINY261-20PU