PIC16F1937-I/P Microchip Technology, PIC16F1937-I/P Datasheet - Page 227

IC PIC MCU FLASH 512KX14 40-PDIP

PIC16F1937-I/P

Manufacturer Part Number
PIC16F1937-I/P
Description
IC PIC MCU FLASH 512KX14 40-PDIP
Manufacturer
Microchip Technology
Series
PIC® XLP™ 16Fr

Specifications of PIC16F1937-I/P

Program Memory Type
FLASH
Program Memory Size
14KB (8K x 14)
Package / Case
40-DIP (0.600", 15.24mm)
Core Processor
PIC
Core Size
8-Bit
Speed
32MHz
Connectivity
I²C, LIN, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number Of I /o
36
Eeprom Size
256 x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 14x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
PIC16F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
512 B
Interface Type
EUSART/MI2C/SPI
Maximum Clock Frequency
32 MHz
Number Of Programmable I/os
36
Number Of Timers
5
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
52715-96, 52716-328, 52717-734
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005
Minimum Operating Temperature
- 40 C
On-chip Adc
14-ch x 10-bit
A/d Bit Size
10 bit
A/d Channels Available
14
Height
4.95 mm
Length
53.21 mm
Supply Voltage (max)
5.5 V
Supply Voltage (min)
1.8 V
Width
14.73 mm
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC16F1937-I/PT
Manufacturer:
CYPRESS
Quantity:
460
Part Number:
PIC16F1937-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC16F1937-I/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
PIC16F1937-I/PT
0
22.4.5
In Half-Bridge applications where all power switches
are modulated at the PWM frequency, the power
switches normally require more time to turn off than to
turn on. If both the upper and lower power switches are
switched at the same time (one turned on, and the
other turned off), both switches may be on for a short
period of time until one switch completely turns off.
During this brief interval, a very high current
(shoot-through current) will flow through both power
switches, shorting the bridge supply. To avoid this
potentially destructive shoot-through current from
flowing during switching, turning on either of the power
switches is normally delayed to allow the other switch
to completely turn off.
In Half-Bridge mode, a digitally programmable
dead-band delay is available to avoid shoot-through
current from destroying the bridge power switches. The
delay occurs at the signal transition from the non-active
state to the active state. See Figure 22-16 for
illustration. The lower seven bits of the associated
PWMxCON register (Register 22-5) sets the delay
period in terms of microcontroller instruction cycles
(T
FIGURE 22-17:
 2009 Microchip Technology Inc.
CY
Standard Half-Bridge Circuit (“Push-Pull”)
or 4 T
OSC
PROGRAMMABLE DEAD-BAND
DELAY MODE
).
EXAMPLE OF HALF-BRIDGE APPLICATIONS
PxA
PxB
Preliminary
FET
Driver
FET
Driver
FIGURE 22-16:
PIC16F193X/LF193X
PxA
PxB
td = Dead-Band Delay
Note 1: At this time, the TMRx register is equal to the
(2)
(2)
V+
V-
2: Output signals are shown as active-high.
(1)
td
Pulse Width
PRx register.
Load
Period
td
EXAMPLE OF
HALF-BRIDGE PWM
OUTPUT
+
V
-
+
V
-
(1)
DS41364D-page 227
Period
(1)

Related parts for PIC16F1937-I/P