MC68332ACAG16 Freescale Semiconductor, MC68332ACAG16 Datasheet - Page 150

no-image

MC68332ACAG16

Manufacturer Part Number
MC68332ACAG16
Description
IC MCU 32BIT 16MHZ 144-LQFP
Manufacturer
Freescale Semiconductor
Series
M683xxr
Datasheets

Specifications of MC68332ACAG16

Core Processor
CPU32
Core Size
32-Bit
Speed
16MHz
Connectivity
EBI/EMI, SCI, SPI, UART/USART
Peripherals
POR, PWM, WDT
Number Of I /o
15
Program Memory Type
ROMless
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
144-LQFP
Processor Series
M683xx
Core
CPU32
Data Bus Width
32 bit
Maximum Clock Frequency
16 MHz
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Interface Type
SCI, SPI, UART
Minimum Operating Temperature
- 40 C
Controller Family/series
68K
No. Of I/o's
15
Ram Memory Size
2KB
Cpu Speed
16MHz
No. Of Timers
1
Embedded Interface Type
QSPI, SCI, UART
Digital Ic Case Style
LQFP
Rohs Compliant
Yes
Data Ram Size
2 KB
Number Of Programmable I/os
15
Number Of Timers
16
Cpu Family
68K/M683xx
Device Core
ColdFire
Device Core Size
32b
Frequency (max)
16MHz
Program Memory Size
Not Required
Total Internal Ram Size
2KB
# I/os (max)
15
Number Of Timers - General Purpose
16
Operating Supply Voltage (typ)
5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
4.5V
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
144
Package Type
LQFP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Program Memory Size
-
Data Converters
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC68332ACAG16
Manufacturer:
Freescale Semiconductor
Quantity:
135
Part Number:
MC68332ACAG16
Manufacturer:
Freescale
Quantity:
319
Part Number:
MC68332ACAG16
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
6.4.3.6 Receiver Operation
6-28
The transmission complete (TC) flag in SCSR shows transmitter shifter state. When
TC = 0, the shifter is busy. TC is set when all shifting operations are completed. TC is
not automatically cleared. The processor must clear it by first reading SCSR while TC
is set, then writing new data to TDR.
The state of the serial shifter is checked when the TE bit is set. If TC = 1, an idle frame
is transmitted as a preamble to the following data frame. If TC = 0, the current opera-
tion continues until the final bit in the frame is sent, then the preamble is transmitted.
The TC bit is set at the end of preamble transmission.
The send break (SBK) bit in SCCR1 is used to insert break frames in a transmission.
A nonzero integer number of break frames is transmitted while SBK is set. Break trans-
mission begins when SBK is set, and ends with the transmission in progress at the
time either SBK or TE are cleared. If SBK is set while a transmission is in progress,
that transmission finishes normally before the break begins. To assure the minimum
break time, toggle SBK quickly to one and back to zero. The TC bit is set at the end of
break transmission. After break transmission, at least one bit-time of logic level one
(mark idle) is transmitted to ensure that a subsequent start bit can be detected.
If TE remains set, after all pending idle, data and break frames are shifted out, TDRE
and TC are set and TXD is held at logic level one (mark).
When TE is cleared, the transmitter is disabled after all pending idle, data and break
frames are transmitted. The TC flag is set, and the TXD pin reverts to control by PQS-
PAR and DDRQS. Buffered data is not transmitted after TE is cleared. To avoid losing
data in the buffer, do not clear TE until TDRE is set.
Some serial communication systems require a mark on the TXD pin even when the
transmitter is disabled. Configure the TXD pin as an output (DDRQS), then write a one
to PORTQS bit 7. When the transmitter releases control of the TXD pin, it reverts to
driving a logic one output.
To insert a delimiter between two messages, to place nonlistening receivers in wakeup
mode between transmissions, or to signal a retransmission by forcing an idle line, clear
and then set TE before data in the serial shifter has shifted out. The transmitter finishes
the transmission, then sends a preamble. After the preamble is transmitted, if TDRE
is set, the transmitter will mark idle. Otherwise, normal transmission of the next se-
quence will begin.
Both TDRE and TC have associated interrupts. The interrupts are enabled by the
transmit interrupt enable (TIE) and transmission complete interrupt enable (TCIE) bits
in SCCR1. Service routines can load the last byte of data in a sequence into the TDR,
then terminate the transmission when a TDRE interrupt occurs.
The receiver enable (RE) bit in SCCR1 enables (RE = 1) and disables (RE = 0) the
transmitter. The receiver contains a receive serial shifter and a parallel receive data
register (RDR) located in the SCI data register (SCDR). The serial shifter cannot be
directly accessed by the CPU. The receiver is double-buffered, allowing data to be
held in RDR while other data is shifted in.
Freescale Semiconductor, Inc.
For More Information On This Product,
QUEUED SERIAL MODULE
Go to: www.freescale.com
USER’S MANUAL
MC68332

Related parts for MC68332ACAG16