AT90CAN32-16AUR Atmel, AT90CAN32-16AUR Datasheet - Page 66

no-image

AT90CAN32-16AUR

Manufacturer Part Number
AT90CAN32-16AUR
Description
MCU AVR 32K FLASH 16MHZ 64-TQFP
Manufacturer
Atmel
Series
AVR® 90CANr
Datasheets

Specifications of AT90CAN32-16AUR

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
CAN, EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
32KB (32K x 8)
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
Data Bus Width
8 bit
Mounting Style
SMD/SMT
For Use With
ATSTK600 - DEV KIT FOR AVR/AVR32ATDVK90CAN1 - KIT DEV FOR AT90CAN128 MCU
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT90CAN32-16AUR
Manufacturer:
Atmel
Quantity:
10 000
9. I/O-Ports
9.1
66
Introduction
AT90CAN32/64/128
All AVR ports have true Read-Modify-Write functionality when used as general digital I/O ports.
This means that the direction of one port pin can be changed without unintentionally changing
the direction of any other pin with the SBI and CBI instructions. The same applies when chang-
ing drive value (if configured as output) or enabling/disabling of pull-up resistors (if configured as
input). Each output buffer has symmetrical drive characteristics with both high sink and source
capability. All port pins have individually selectable pull-up resistors with a supply-voltage invari-
ant resistance. All I/O pins have protection diodes to both V
9-1. Refer to
Figure 9-1.
All registers and bit references in this section are written in general form. A lower case “x” repre-
sents the numbering letter for the port, and a lower case “n” represents the bit number. However,
when using the register or bit defines in a program, the precise form must be used. For example,
PORTB3 for bit no. 3 in Port B, here documented generally as PORTxn. The physical I/O Regis-
ters and bit locations are listed in “Register Description for I/O-Ports”.
Three I/O memory address locations are allocated for each port, one each for the Data Register
– PORTx, Data Direction Register – DDRx, and the Port Input Pins – PINx. The Port Input Pins
I/O location is read only, while the Data Register and the Data Direction Register are read/write.
However, writing a logic one to a bit in the PINx Register, will result in a toggle in the correspond-
ing bit in the Data Register. In addition, the Pull-up Disable – PUD bit in MCUCR disables the
pull-up function for all pins in all ports when set.
Using the I/O port as General Digital I/O is described in “Ports as General Digital I/O”. Most port
pins are multiplexed with alternate functions for the peripheral features on the device. How each
alternate function interferes with the port pin is described in
71. Refer to the individual module sections for a full description of the alternate functions.
Note that enabling the alternate function of some of the port pins does not affect the use of the
other pins in the port as general digital I/O.
“Electrical Characteristics (1)” on page 365
I/O Pin Equivalent Schematic
Pxn
C
pin
for a complete list of parameters.
CC
“Alternate Port Functions” on page
"General Digital I/O" for
and Ground as indicated in
See Figure
R
Details
pu
Logic
7679H–CAN–08/08
Figure

Related parts for AT90CAN32-16AUR