PIC18F4455-I/P Microchip Technology, PIC18F4455-I/P Datasheet - Page 42

IC PIC MCU FLASH 12KX16 40DIP

PIC18F4455-I/P

Manufacturer Part Number
PIC18F4455-I/P
Description
IC PIC MCU FLASH 12KX16 40DIP
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18F4455-I/P

Program Memory Type
FLASH
Program Memory Size
24KB (12K x 16)
Package / Case
40-DIP (0.600", 15.24mm)
Core Processor
PIC
Core Size
8-Bit
Speed
48MHz
Connectivity
I²C, SPI, UART/USART, USB
Peripherals
Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number Of I /o
35
Eeprom Size
256 x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
4.2 V ~ 5.5 V
Data Converters
A/D 13x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
PIC18F
Core
PIC
Data Bus Width
8 bit
Data Ram Size
2 KB
Interface Type
SPI/I2C/EAUSART
Maximum Clock Frequency
48 MHz
Number Of Programmable I/os
35
Number Of Timers
4
Operating Supply Voltage
2 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE2000, ICE4000, DV164136, DM163025
Minimum Operating Temperature
- 40 C
On-chip Adc
13-ch x 10-bit
Package
40PDIP
Device Core
PIC
Family Name
PIC18
Maximum Speed
48 MHz
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
I3-DB18F4550 - BOARD DAUGHTER ICEPIC3DM163025 - PIC DEM FULL SPEED USB DEMO BRDDVA18XP400 - DEVICE ADAPTER 18F4220 PDIP 40LD444-1001 - DEMO BOARD FOR PICMICRO MCUACICE0206 - ADAPTER MPLABICE 40P 600 MIL
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F4455-I/P
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
PIC18F4455-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC18F4455-I/PT
Manufacturer:
MICROCH
Quantity:
20 000
PIC18F2455/2550/4455/4550
3.4.1
This mode is unique among the three low-power Idle
modes in that it does not disable the primary device
clock. For timing sensitive applications, this allows for
the fastest resumption of device operation, with its
more accurate primary clock source, since the clock
source does not have to “warm up” or transition from
another oscillator.
PRI_IDLE mode is entered from PRI_RUN mode by
setting the IDLEN bit and executing a SLEEP instruc-
tion. If the device is in another Run mode, set IDLEN
first, then clear the SCS bits and execute SLEEP.
Although the CPU is disabled, the peripherals continue
to be clocked from the primary clock source specified
by the FOSC3:FOSC0 Configuration bits. The OSTS
bit remains set (see Figure 3-7).
When a wake event occurs, the CPU is clocked from the
primary clock source. A delay of interval T
required between the wake event and when code
execution starts. This is required to allow the CPU to
become ready to execute instructions. After the
wake-up, the OSTS bit remains set. The IDLEN and
SCS bits are not affected by the wake-up (see
Figure 3-8).
FIGURE 3-7:
FIGURE 3-8:
DS39632C-page 40
CPU Clock
Peripheral
CPU Clock
Program
Counter
Peripheral
Program
OSC1
Counter
Clock
OSC1
Clock
PRI_IDLE MODE
Q1
Q1
TRANSITION TIMING FOR ENTRY TO IDLE MODE
TRANSITION TIMING FOR WAKE FROM IDLE TO RUN MODE
Wake Event
Q2
PC
Q3
T
CSD
Q4
CSD
Preliminary
is
Q1
PC
3.4.2
In SEC_IDLE mode, the CPU is disabled but the
peripherals continue to be clocked from the Timer1
oscillator. This mode is entered from SEC_RUN by set-
ting the IDLEN bit and executing a SLEEP instruction. If
the device is in another Run mode, set IDLEN first, then
set SCS1:SCS0 to ‘01’ and execute SLEEP. When the
clock source is switched to the Timer1 oscillator, the
primary oscillator is shut down, the OSTS bit is cleared
and the T1RUN bit is set.
When a wake event occurs, the peripherals continue to
be clocked from the Timer1 oscillator. After an interval
of T
cuting code being clocked by the Timer1 oscillator. The
IDLEN and SCS bits are not affected by the wake-up;
the Timer1 oscillator continues to run (see Figure 3-8).
Note:
CSD
following the wake event, the CPU begins exe-
SEC_IDLE MODE
The Timer1 oscillator should already be
running prior to entering SEC_IDLE mode.
If the T1OSCEN bit is not set when the
SLEEP instruction is executed, the SLEEP
instruction will be ignored and entry to
SEC_IDLE mode will not occur. If the
Timer1 oscillator is enabled but not yet
running, peripheral clocks will be delayed
until the oscillator has started. In such
situations, initial oscillator operation is far
from stable and unpredictable operation
may result.
PC + 2
Q2
© 2006 Microchip Technology Inc.
Q3
Q4

Related parts for PIC18F4455-I/P