DSPIC30F6010-20E/PF Microchip Technology, DSPIC30F6010-20E/PF Datasheet - Page 158

no-image

DSPIC30F6010-20E/PF

Manufacturer Part Number
DSPIC30F6010-20E/PF
Description
IC,DSP,16-BIT,CMOS,TQFP,80PIN,PLASTIC
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F6010-20E/PF

Rohs Compliant
YES
Core Processor
dsPIC
Core Size
16-Bit
Speed
20 MIPS
Connectivity
CAN, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LVD, Motor Control PWM, QEI, POR, PWM, WDT
Number Of I /o
68
Program Memory Size
144KB (48K x 24)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 5.5 V
Data Converters
A/D 16x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Package / Case
80-TQFP, 80-VQFP
Package
80TQFP
Device Core
dsPIC
Family Name
dsPIC30
Maximum Speed
20 MHz
Operating Supply Voltage
3.3|5 V
Data Bus Width
16 Bit
Interface Type
CAN/I2C/SPI/UART
On-chip Adc
16-chx10-bit
Number Of Timers
5
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
DM300019 - BOARD DEMO DSPICDEM 80L STARTERAC164314 - MODULE SKT FOR PM3 80PFDM300020 - BOARD DEV DSPICDEM MC1 MOTORCTRLAC30F001 - MODULE SOCKET DSPIC30F 80TQFPXLT80PT2 - SOCKET TRANSITION ICE 80TQFP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Other names
DSPIC30F601020EPF

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F6010-20E/PF
Manufacturer:
Microchip Technology
Quantity:
10 000
dsPIC30F4011/4012
Any interrupt that is individually enabled (using the
corresponding IE bit) and meets the prevailing priority
level can wake-up the processor. The processor
processes the interrupt and branches to the ISR. The
SLEEP status bit in the RCON register is set upon
wake-up.
All Resets wake-up the processor from Sleep mode.
Any Reset, other than POR, sets the SLEEP status bit.
In a POR, the SLEEP bit is cleared.
If Watchdog Timer is enabled, the processor wakes-up
from Sleep mode upon WDT time-out. The SLEEP and
WDTO status bits are both set.
21.5.2
In Idle mode, the clock to the CPU is shut down while
peripherals keep running. Unlike Sleep mode, the clock
source remains active.
Several peripherals have a control bit in each module,
that allows them to operate during Idle.
LPRC Fail-Safe Clock Monitor remains active if clock
failure detect is enabled.
The processor wakes up from Idle if at least one of the
following conditions is true:
• on any interrupt that is individually enabled (IE bit
• on any Reset (POR, BOR, MCLR)
• on WDT time-out
Upon wake-up from Idle mode, the clock is re-applied
to the CPU and instruction execution begins immedi-
ately, starting with the instruction following the PWRSAV
instruction.
DS70135E-page 156
Note:
is ‘1’) and meets the required priority level
In spite of various delays applied (T
T
(and PLL) may not be active at the end of
the time-out (e.g., for low-frequency crys-
tals). In such cases, if FSCM is enabled,
the device detects this condition as a clock
failure and processes the clock failure
trap. The FRC oscillator is enabled, and
the user must re-enable the crystal oscilla-
tor. If FSCM is not enabled, then the
device simply suspends execution of code
until the clock is stable and remains in
Sleep until the oscillator clock has started.
IDLE MODE
LOCK
and T
PWRT
), the crystal oscillator
POR
,
Any interrupt that is individually enabled (using IE bit)
and meets the prevailing priority level can wake-up the
processor. The processor processes the interrupt and
branches to the ISR. The IDLE status bit in RCON
register is set upon wake-up.
Any Reset, other than POR, sets the IDLE status bit.
On a POR, the IDLE bit is cleared.
If Watchdog Timer is enabled, then the processor
wakes-up from Idle mode upon WDT time-out. The
IDLE and WDTO status bits are both set.
Unlike wake-up from Sleep, there are no time delays
involved in wake-up from Idle.
21.6
The Configuration bits in each device Configuration
register specify some of the device modes and are
programmed by a device programmer, or by using the
In-Circuit Serial Programming™ (ICSP™) feature of the
device. Each device Configuration register is a 24-bit
register, but only the lower 16 bits of each register are
used to hold configuration data. There are four device
Configuration registers available to the user:
1.
2.
3.
4.
The placement of the Configuration bits is automatically
handled when you select the device in your device
programmer. The desired state of the Configuration bits
may be specified in the source code (dependent on the
language tool used), or through the programming
interface. After the device has been programmed, the
application software may read the Configuration bit
values through the table read instructions. For additional
information,
specifications of the device.
Note:
FOSC (0xF80000): Oscillator Configuration
Register
FWDT (0xF80002): Watchdog Timer
Configuration Register
FBORPOR (0xF80004): BOR and POR
Configuration Register
FGS (0xF8000A): General Code Segment
Configuration Register
Device Configuration Registers
If the code protection Configuration fuse
bits (FGS<GCP> and FGS<GWRP>)
have been programmed, an erase of the
entire code-protected device is only
possible at voltages V
please
refer
© 2007 Microchip Technology Inc.
to
DD
the
≥ 4.5V.
programming

Related parts for DSPIC30F6010-20E/PF