AD7265BSUZ Analog Devices Inc, AD7265BSUZ Datasheet - Page 12

IC,Data Acquisition System,3-CHANNEL,12-BIT,TQFP,32PIN,PLASTIC

AD7265BSUZ

Manufacturer Part Number
AD7265BSUZ
Description
IC,Data Acquisition System,3-CHANNEL,12-BIT,TQFP,32PIN,PLASTIC
Manufacturer
Analog Devices Inc
Datasheet

Specifications of AD7265BSUZ

Design Resources
AD7265 in Differential and Single-Ended Configurations Using AD8022 (CN0048)
Number Of Bits
12
Sampling Rate (per Second)
1M
Data Interface
DSP, MICROWIRE™, QSPI™, Serial, SPI™
Number Of Converters
2
Power Dissipation (max)
21mW
Voltage Supply Source
Analog and Digital
Operating Temperature
-40°C ~ 125°C
Mounting Type
Surface Mount
Package / Case
32-TQFP, 32-VQFP
Number Of Elements
2
Resolution
12Bit
Architecture
SAR
Sample Rate
1MSPS
Input Polarity
Unipolar
Input Type
Voltage
Rated Input Volt
2.5/5V
Differential Input
Yes
Power Supply Requirement
Analog and Digital
Single Supply Voltage (typ)
3/5V
Single Supply Voltage (min)
2.7V
Single Supply Voltage (max)
5.25V
Dual Supply Voltage (typ)
Not RequiredV
Dual Supply Voltage (min)
Not RequiredV
Dual Supply Voltage (max)
Not RequiredV
Power Dissipation
21mW
Differential Linearity Error
-0.99LSB/1.5LSB
Integral Nonlinearity Error
±1.5LSB
Operating Temp Range
-40C to 125C
Operating Temperature Classification
Automotive
Mounting
Surface Mount
Pin Count
32
Package Type
TQFP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
EVAL-AD7265CB - BOARD EVALUATION FOR AD7265
Lead Free Status / Rohs Status
Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AD7265BSUZ
Manufacturer:
ADI
Quantity:
200
Part Number:
AD7265BSUZ
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
AD7265BSUZ-REEL
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
AD7265BSUZ-REEL7
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
AD7265BSUZ-REEL7
Manufacturer:
ADI/亚德诺
Quantity:
20 000
AD7265
The AD7265 is tested using the CCIF standard where two input
frequencies near the top end of the input bandwidth are used.
In this case, the second-order terms are usually distanced in
frequency from the original sine waves, while the third-order
terms are usually at a frequency close to the input frequencies.
As a result, the second-order and third-order terms are
specified separately. The calculation of the intermodulation
distortion is as per the THD specification, where it is the ratio
of the rms sum of the individual distortion products to the rms
amplitude of the sum of the fundamentals expressed in dBs.
Common-Mode Rejection Ratio (CMRR)
CMRR is defined as the ratio of the power in the ADC output at
full-scale frequency, f, to the power of a 100 mV p-p sine wave
applied to the common-mode voltage of V
frequency f
where:
Pf is the power at frequency f in the ADC output.
f P
Power Supply Rejection Ratio (PSRR)
Variations in power supply affect the full-scale transition but
not the converter’s linearity. PSRR is the maximum change in
the full-scale transition point due to a change in power supply
voltage from the nominal value (see Figure 4).
S
is the power at frequency f
CMRR (dB) = 10 log(Pf/Pf
S
as
S
in the ADC output.
S
)
IN+
and V
IN−
of
Rev. A | Page 12 of 28
Thermal Hysteresis
Thermal hysteresis is defined as the absolute maximum change
of reference output voltage after the device is cycled through
temperature from either
or
It is expressed in ppm by
where:
V
V
T_HYS−.
REF
REF
T_HYS+ = +25°C to T
T_HYS− = +25°C to T
(25°C) is V
(T_HYS) is the maximum change of V
V
HYS
(
ppm
)
REF
=
at 25°C.
V
REF
(
25
MAX
MIN
°
V
) C
REF
to +25°C
to +25°C
(
V
25
REF
°
) C
(
T
_
HYS
REF
at T_HYS+ or
)
×
10
6

Related parts for AD7265BSUZ