AM29LV800BT-70EI AMD (ADVANCED MICRO DEVICES), AM29LV800BT-70EI Datasheet - Page 21

no-image

AM29LV800BT-70EI

Manufacturer Part Number
AM29LV800BT-70EI
Description
IC 8M FLSH (512KX16) TOP SECTO
Manufacturer
AMD (ADVANCED MICRO DEVICES)
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AM29LV800BT-70EI
Manufacturer:
AMD
Quantity:
20 000
Chip Erase Command Sequence
Chip erase is a six bus cycle operation. The chip erase
command sequence is initiated by writing two unlock
cycles, followed by a set-up command. Two additional
unlock write cycles are then followed by the chip
erase command, which in turn invokes the Embedded
Erase algorithm. The device does not require the
system to preprogram prior to erase. The Embedded
Erase algorithm automatically preprograms and veri-
fies the entire memory for an all zero data pattern
prior to electrical erase. The system is not required to
provide any controls or timings during these opera-
tions. Table 1 shows the address and data require-
ments for the chip erase command sequence.
Any commands written to the chip during the
Embedded Erase algorithm are ignored. Note that a
hardware reset during the chip erase operation
immediately terminates the operation. The Chip
Erase command sequence should be reinitiated once
the device has returned to reading array data, to
ensure data integrity.
The system can determine the status of the erase
operation by using DQ7, DQ6, DQ2, or RY/BY#. See
“Write Operation Status” for information on these
status bits. When the Embedded Erase algorithm is
complete, the device returns to reading array data
and addresses are no longer latched.
Figure 4 illustrates the algorithm for the erase opera-
tion. See the Erase/Program Operations tables in “AC
Characteristics” for parameters, and to Figure 18 for
timing diagrams.
Sector Erase Command Sequence
Sector erase is a six bus cycle operation. The sector
erase command sequence is initiated by writing two
unlock cycles, followed by a set-up command. Two
additional unlock write cycles are then followed by the
address of the sector to be erased, and the sector
erase command. Table 1 shows the address and data
r e q u i r e m e n t s f o r t h e s e c t o r e ra s e c o m m a n d
sequence.
The device does not require the system to prepro-
gram the memory prior to erase. The Embedded
Erase algorithm automatically programs and verifies
the sector for an all zero data pattern prior to elec-
trical erase. The system is not required to provide any
controls or timings during these operations.
After the command sequence is written, a sector
erase time-out of 50 µs begins. During the time-out
period, additional sector addresses and sector erase
commands may be written. Loading the sector erase
buffer may be done in any sequence, and the number
of sectors may be from one sector to all sectors. The
time between these additional cycles must be less
than 50 µs, otherwise the last address and command
might not be accepted, and erasure may begin. It is
recommended that processor interrupts be disabled
during this time to ensure all commands are
accepted. The interrupts can be re-enabled after the
last Sector Erase command is written. If the time
Am29LV800B
between additional sector erase commands can be
assumed to be less than 50 µs, the system need not
monitor DQ3. Any command other than Sector
Erase or Erase Suspend during the time-out
period resets the device to reading array data.
The system must rewrite the command sequence and
any additional sector addresses and commands.
The system can monitor DQ3 to determine if the
sector erase timer has timed out. (See the “DQ3:
Sector Erase Timer” section.) The time-out begins
from the rising edge of the final WE# pulse in the
command sequence.
Once the sector erase operation has begun, only the
Erase Suspend command is valid. All other com-
mands are ignored. Note that a hardware reset
during the sector erase operation immediately termi-
nates the operation. The Sector Erase command
sequence should be reinitiated once the device has
returned to reading array data, to ensure data integ-
rity.
When the Embedded Erase algorithm is complete, the
device returns to reading array data and addresses
are no longer latched. The system can determine the
status of the erase operation by using DQ7, DQ6,
DQ2, or RY/BY#. Refer to “Write Operation Status”
for information on these status bits.
Figure 4 illustrates the algorithm for the erase opera-
tion. Refer to the Erase/Program Operations tables in
the “AC Characteristics” section for parameters, and
to Figure 18 for timing diagrams.
Erase Suspend/Erase Resume Commands
The Erase Suspend command allows the system to
interrupt a sector erase operation and then read data
from, or program data to, any sector not selected for
erasure. This command is valid only during the sector
erase operation, including the 50 µs time-out period
during the sector erase command sequence. The
Erase Suspend command is ignored if written during
the chip erase operation or Embedded Program algo-
rithm. Writing the Erase Suspend command during
the Sector Erase time-out immediately terminates
the time-out period and suspends the erase opera-
tion. Addresses are “don’t-cares” when writing the
Erase Suspend command.
When the Erase Suspend command is written during
a sector erase operation, the device requires a
maximum of 20 µs to suspend the erase operation.
However, when the Erase Suspend command is
written during the sector erase time-out, the device
immediately terminates the time-out period and sus-
pends the erase operation.
After the erase operation has been suspended, the
system can read array data from or program data to
any sector not selected for erasure. (The device
“erase suspends” all sectors selected for erasure.)
Normal read and write timings and command defini-
tions apply. Reading at any address within erase-sus-
pended sectors produces status data on DQ7–DQ0.
The system can use DQ7, or DQ6 and DQ2 together,
19

Related parts for AM29LV800BT-70EI