AM29LV800BT-70EI AMD (ADVANCED MICRO DEVICES), AM29LV800BT-70EI Datasheet - Page 24

no-image

AM29LV800BT-70EI

Manufacturer Part Number
AM29LV800BT-70EI
Description
IC 8M FLSH (512KX16) TOP SECTO
Manufacturer
AMD (ADVANCED MICRO DEVICES)
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AM29LV800BT-70EI
Manufacturer:
AMD
Quantity:
20 000
WRITE OPERATION STATUS
The device provides several bits to determine the
status of a write operation: DQ2, DQ3, DQ5, DQ6,
DQ7, and RY/BY#. Table 2 and the following subsec-
tions describe the functions of these bits. DQ7,
RY/BY#, and DQ6 each offer a method for deter-
mining whether a program or erase operation is com-
plete or in progress. These three bits are discussed
first.
DQ7: Data# Polling
The Data# Polling bit, DQ7, indicates to the host
system whether an Embedded Algorithm is in
progress or completed, or whether the device is in
Erase Suspend. Data# Polling is valid after the rising
edge of the final WE# pulse in the program or erase
command sequence.
During the Embedded Program algorithm, the device
outputs on DQ7 the complement of the datum pro-
grammed to DQ7. This DQ7 status also applies to pro-
g ra m m i n g d u r i n g E ra s e S u s p e n d . W h e n t h e
Embedded Program algorithm is complete, the device
outputs the datum programmed to DQ7. The system
must provide the program address to read valid
status information on DQ7. If a program address falls
within a protected sector, Data# Polling on DQ7 is
active for approximately 1 µs, then the device returns
to reading array data.
During the Embedded Erase algorithm, Data# Polling
produces a “0” on DQ7. When the Embedded Erase
algorithm is complete, or if the device enters the
Erase Suspend mode, Data# Polling produces a “1”
on DQ7. This is analogous to the complement/true
datum output described for the Embedded Program
algorithm: the erase function changes all the bits in a
sector to “1”; prior to this, the device outputs the
“complement,” or “0.” The system must provide an
address within any of the sectors selected for erasure
to read valid status information on DQ7.
After an erase command sequence is written, if all
sectors selected for erasing are protected, Data#
Polling on DQ7 is active for approximately 100 µs,
then the device returns to reading array data. If not
all selected sectors are protected, the Embedded
Erase algorithm erases the unprotected sectors, and
ignores the selected sectors that are protected.
When the system detects DQ7 has changed from the
complement to true data, it can read valid data at
DQ7–DQ0 on the following read cycles. This is
because DQ7 may change asynchronously with DQ0–
DQ6 while Output Enable (OE#) is asserted low.
F i g u r e 1 9 , D a t a # P o l l i n g T i m i n g s ( D u r i n g
Embedded Algorithms), in the “AC Characteristics”
section illustrates this.
Table 2 shows the outputs for Data# Polling on DQ7.
Figure 5 shows the Data# Polling algorithm.
22
Am29LV800B
RY/BY#: Ready/Busy#
The RY/BY# is a dedicated, open-drain output pin
that indicates whether an Embedded Algorithm is in
progress or complete. The RY/BY# status is valid
after the rising edge of the final WE# pulse in the
command sequence. Since RY/BY# is an open-drain
output, several RY/BY# pins can be tied together in
parallel with a pull-up resistor to V
Notes:
1. VA = Valid address for programming. During a sector
2. DQ7 should be rechecked even if DQ5 = “1” because
No
erase operation, a valid address is an address within any
sector selected for erasure. During chip erase, a valid
address is any non-protected sector address.
DQ7 may change simultaneously with DQ5.
Figure 5. Data# Polling Algorithm
Read DQ7–DQ0
Read DQ7–DQ0
DQ7 = Data?
DQ7 = Data?
Addr = VA
Addr = VA
DQ5 = 1?
START
FAIL
No
Yes
No
Yes
Yes
CC
.
PASS

Related parts for AM29LV800BT-70EI