AD1953YSTRL7 Analog Devices Inc, AD1953YSTRL7 Datasheet - Page 28

IC DSP DAC AUDIO3CH/26BIT 48LQFP

AD1953YSTRL7

Manufacturer Part Number
AD1953YSTRL7
Description
IC DSP DAC AUDIO3CH/26BIT 48LQFP
Manufacturer
Analog Devices Inc
Series
SigmaDSP®r
Datasheet

Specifications of AD1953YSTRL7

Rohs Status
RoHS non-compliant
Number Of Bits
26
Data Interface
Serial
Number Of Converters
3
Voltage Supply Source
Analog and Digital
Power Dissipation (max)
540mW
Operating Temperature
-40°C ~ 105°C
Mounting Type
Surface Mount
Package / Case
48-LQFP
For Use With
EVAL-AD1953EBZ - BOARD EVAL FOR AD1953 3CH 24BIT
Settling Time
-
AD1953
Setting the Data and MCLK Input Selectors
The AD1953 contains input selectors for both the serial data
inputs as well as the MCLK input. This allows the AD1953 to
select a variety of input and clock sources with no external hard-
ware required. These input selectors are controlled by writing to
SPI Control Register 2.
When the DATA source or MCLK source is changed by writing
to the SPI port, it is possible that a pop or click will occur in the
audio. To prevent this noise, the core should be shut down by
writing a 1 to the “halt program” bit in Control Register 1. This
initiates a volume ramp-down sequence followed by a shutdown
of the DSP core. Once the core is shut down (which can be
verified by reading Bit <1> from Control Register 1, or by wait-
ing at least 20 ms after the halt program command is issued),
the new DATA or MCLK source can be programmed by writ-
ing to Control Register 2. The DSP core can then be restarted
by clearing the “halt-program” bit in Control Register 1.
DATA CAPTURE REGISTERS AND OUTPUTS
The AD1953 incorporates a feature called “data capture.” Using
this feature, any node in the signal processing flow may be sent
either to an SPI-readable register, to a dedicated serial output
pin (2-channel output), or to a set of dual-function pins (6-channel
TDM mode). This allows the basic functionality of the AD1953
to be extended to a larger number of channels, or alternatively it
can be used to monitor and display information about signal
levels or compressor/limiter activity.
The AD1953 contains eight independent data capture registers.
The Data Capture SPI Out registers are used for reading back
internal DSP signals over the SPI port. These registers can be
used for a variety of purposes. One example might be to access
the dB output of the internal rms detector, to run a front-panel
signal level display.
The remaining data capture registers are used to output internal
DSP signals to external DACs, CODECs, or DSP chips. There
are two possible output modes, detailed in the following table.
Control
Reg 1, Bits Control Reg
<13:12>
00
00
01
10
10
In TDM output mode, the Serial Mux Out multifunction pins
(41–43) are used to output 6-channel TDM data, BCLK, and
frame sync signals. In 2-channel output mode, the data appears
on Pin 45, and can be used with the BCLK and LRCLK signals
that are already present on the serial input pins. The data will
Table XX. Data Capture/TDM Mode Settings
2, Bit <8>
0
1
Don’t care
0
1
DCSOUT
Pin (45)
Functions
OFF
OFF
OFF
ON, 2-
channel
output.
ON, 2-
channel
output.
DMUXO/TDMO,
LRMUXO/TDMFS,
BMUXO/TDMBC
Pin Functions
OFF
Serial MUX Output
TDM Data Capture
Outputs and Clocks,
6-channel Output
OFF
Serial MUX Output
–28–
be formatted in the same way as the input data. The data cap-
ture feature is primarily intended to feed signals to external
DACs, DSPs, or CODECs, such as the AD1836, in order to
extend the number of channels that the internal DSP can access.
For each of the data capture registers, a capture count and a
register select must be set. The capture count is a number between
0 and 511 that corresponds to the program step number where
the capture will occur. The register-select field programs one of
four registers in the DSP core that will be transferred to the data
capture register when the program counter equals the capture
count. The register select field is decoded as follows:
00: Multiplier Output (Mult_Out)
01: Output of dB conversion block (DB_OUT)
10: Multiplier Data Input (MDI)
11: Multiplier Coefficient Input (MCI)
The capture count and register select bits are set by writing to
one of the four data capture registers at the following SPI addresses:
266: SPI data capture setup register 1
267: SPI data capture setup register 2
268: Data Capture serial out setup register 0
269: Data Capture serial out setup register 1
270: Data Capture serial out setup register 2
271: Data Capture serial out setup register 3
272: Data Capture serial out setup register 4
273: Data Capture serial out setup register 5
The format of the captured data varies according to the register
select fields. Data captured from the Mult_Out setting is in 1.23
twos complement format, so that a full-scale input signal will
produce a full-scale digital output (assuming no processing). If
the parameters are set such that the input-to-output gain is
more than 0 dB, then the digital output will be clipped.
Data captured from the DB_OUT setting is in 5.19 format,
where the actual rms dB level is equal to –87 + (3 × DB_OUT).
In this equation, DB_OUT is the value that is captured. It
follows that in this data format, the actual output readings will
range from –87 dB to +9 dB. The AD1953 uses the convention
that 0 dB is the rms value of the full-scale digital signal.
Data captured using the MDI setting is in 3.21 format. A 0 dB
digital input will produce a –12 dB digital output, assuming the
AD1953 is set for no processing.
Data captured using the MCI setting is in 2.20 format. This data
is generally a signal gain or filter coefficient, and therefore it does
not make sense to talk about the input-to-output gain. A coeffi-
cient of 0100000000000000000000 corresponds to a gain of 1.0.
The data that must be written to set up the data capture is a
concatenation of the 9-bit program count index with the 2-bit
register select field.
The SPI capture registers can be accessed by reading from SPI
locations 266 (for SPI capture register 1) or 267 (for SPI capture
register 2). The other six data capture registers (data capture
serial-out) automatically transfer their data to either the Data
Capture Serial Out (DCSOUT) pin in 2-channel mode or the
DMUXO/TDMO pin in TDM mode. In 2-channel mode,
DCSOUT capture register 1 is present in the left data slot (as
defined by the serial input format) and DCSOUT capture regis-
ter 2 is present in the right data slot.
REV. 0

Related parts for AD1953YSTRL7