COP8SBR9 NSC [National Semiconductor], COP8SBR9 Datasheet - Page 51

no-image

COP8SBR9

Manufacturer Part Number
COP8SBR9
Description
8-Bit CMOS Flash Based Microcontroller with 32k Memory, Virtual EEPROM and Brownout
Manufacturer
NSC [National Semiconductor]
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
COP8SBR9HVA8
Manufacturer:
Texas Instruments
Quantity:
10 000
Part Number:
COP8SBR9HVA8
Manufacturer:
HARRIS
Quantity:
20 000
Part Number:
COP8SBR9HVA8/NOPB
Manufacturer:
National
Quantity:
225
Part Number:
COP8SBR9HVA8/NOPB
Manufacturer:
Texas Instruments
Quantity:
10 000
Part Number:
COP8SBR9LVA8
Manufacturer:
Texas Instruments
Quantity:
10 000
Part Number:
COP8SBR9LVA8/NOPB
Manufacturer:
National
Quantity:
62
Part Number:
COP8SBR9LVA8/NOPB
Manufacturer:
Texas Instruments
Quantity:
10 000
15.0 Interrupts
15.1 INTRODUCTION
The device supports fourteen vectored interrupts. Interrupt
sources include Timer 1, Timer 2, Timer 3, Timer T0, Port L
Wake-up, Software Trap, MICROWIRE/PLUS, USART and
External Input.
All interrupts force a branch to location 00FF Hex in program
memory. The VIS instruction may be used to vector to the
appropriate service routine from location 00FF Hex.
15.2 MASKABLE INTERRUPTS
All interrupts other than the Software Trap are maskable.
Each maskable interrupt has an associated enable bit and
pending flag bit. The pending bit is set to 1 when the interrupt
condition occurs. The state of the interrupt enable bit, com-
bined with the GIE bit determines whether an active pending
flag actually triggers an interrupt. All of the maskable inter-
rupt pending and enable bits are contained in mapped con-
trol registers, and thus can be controlled by the software.
A maskable interrupt condition triggers an interrupt under the
following conditions:
1. The enable bit associated with that interrupt is set.
2. The GIE bit is set.
3. The device is not processing a non-maskable interrupt.
(If a non-maskable interrupt is being serviced, a
FIGURE 26. Interrupt Block Diagram
51
The Software trap has the highest priority while the default
VIS has the lowest priority.
Each of the 13 maskable inputs has a fixed arbitration rank-
ing and vector.
Figure 26 shows the Interrupt block diagram.
An interrupt is triggered only when all of these conditions are
met at the beginning of an instruction. If different maskable
interrupts meet these conditions simultaneously, the highest-
priority interrupt will be serviced first, and the other pending
interrupts must wait.
Upon Reset, all pending bits, individual enable bits, and the
GIE bit are reset to zero. Thus, a maskable interrupt condi-
tion cannot trigger an interrupt until the program enables it by
setting both the GIE bit and the individual enable bit. When
enabling an interrupt, the user should consider whether or
not a previously activated (set) pending bit should be ac-
knowledged. If, at the time an interrupt is enabled, any
previous occurrences of the interrupt should be ignored, the
associated pending bit must be reset to zero prior to en-
abling the interrupt. Otherwise, the interrupt may be simply
maskable interrupt must wait until that service routine is
completed.)
10138932
www.national.com

Related parts for COP8SBR9