MC9S12E128 MOTOROLA [Motorola, Inc], MC9S12E128 Datasheet - Page 106

no-image

MC9S12E128

Manufacturer Part Number
MC9S12E128
Description
MC9S12E-Family Device User Guide V01.04
Manufacturer
MOTOROLA [Motorola, Inc]
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S12E128CFU
Manufacturer:
FREESCALE
Quantity:
3
Part Number:
MC9S12E128CFU
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S12E128CFU
Manufacturer:
FRE/MOT
Quantity:
20 000
Part Number:
MC9S12E128CFUE
Manufacturer:
FREESCALE
Quantity:
1 000
Part Number:
MC9S12E128CFUE
Manufacturer:
FREESCALE
Quantity:
5 530
Part Number:
MC9S12E128CFUE
Manufacturer:
FREESCALE
Quantity:
2 500
Part Number:
MC9S12E128CFUE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S12E128CFUE
Manufacturer:
FREESCALE
Quantity:
2 500
Part Number:
MC9S12E128CPVE
Manufacturer:
FREESCALE
Quantity:
1 560
Part Number:
MC9S12E128MFUE
Manufacturer:
FREESCALE
Quantity:
20 000
Part Number:
MC9S12E128MPVE
Manufacturer:
Freescale Semiconductor
Quantity:
135
Device User Guide — 9S12E128DGV1/D V01.04
VSS1 and VSS2 are internally connected by metal.
VDD1 and VDD2 are internally connected by metal.
VDDA, VDDX, VDDR as well as VSSA, VSSX, VSSR are connected by anti-parallel diodes for ESD
protection.
A.1.3 Pins
There are four groups of functional pins.
A.1.3.1 3.3V/5V I/O pins
Those I/O pins have a nominal level of 3.3V or 5V depending on the application operating point. This
group of pins is comprised of all port I/O pins, the analog inputs, BKGD pin and the RESET inputs.The
internal structure of all those pins is identical, however some of the functionality may be disabled.
A.1.3.2 Analog Reference
This group of pins is comprised of the VRH and VRL pins.
A.1.3.3 Oscillator
The pins XFC, EXTAL, XTAL dedicated to the oscillator have a nominal 2.5V level. They are supplied
by VDDPLL.
A.1.3.4 TEST
This pin is used for production testing only.
A.1.4 Current Injection
Power supply must maintain regulation within operating V
operating maximum current conditions. If positive injection current (V
injection current may flow out of VDD5 and could result in external power supply going out of regulation.
Insure external VDD5 load will shunt current greater than maximum injection current. This will be the
greatest risk when the MCU is not consuming power; e.g. if no system clock is present, or if clock rate is
very low which would reduce overall power consumption.
106
NOTE:
In the following context VDD5 is used for either VDDA, VDDR and VDDX; VSS5
is used for either VSSA, VSSR and VSSX unless otherwise noted.
IDD5 denotes the sum of the currents flowing into the VDDA, VDDX and VDDR
pins.
VDD is used for VDD1, VDD2 and VDDPLL, VSS is used for VSS1, VSS2 and
VSSPLL.
IDD is used for the sum of the currents flowing into VDD1 and VDD2.
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
DD5
or V
DD
in
range during instantaneous and
> V
DD5
) is greater than I
DD5
, the

Related parts for MC9S12E128