MIKROE-957 mikroElektronika, MIKROE-957 Datasheet - Page 36

no-image

MIKROE-957

Manufacturer Part Number
MIKROE-957
Description
Other Development Tools ASLK PRO ANALOG DEVELOPMENT SYSTEM
Manufacturer
mikroElektronika
Datasheet

Specifications of MIKROE-957

Rohs
yes
Product
Analog System Lab Kit PRO
Tool Is For Evaluation Of
TL082, MPY634
Operating Supply Voltage
2.5 V to 5.5 V
Description/function
Analog Lab Kit for Undergraduate Engineering
Maximum Operating Temperature
+ 125 C
Minimum Operating Temperature
- 40 C
In order to design self-tuned filters and
other analog systems in subsequent
experiments, we need to introduce
one more building block, the Analog
multiplier. The reader will benefit
from viewing the recorded lecture at
[21]. In ASLK PRO, we have used to
MPY634 analog multiplier from Texas
Instruments. Refer to Figure 5.1, which shows the symbol of an analog multiplier.
V
V
V
where
V
V
amplifiers,
V
V
In Experiment 4, if we replace the integrator with a multiplier followed by integrator,
V
then the circuit becomes a Voltage Controlled Filter (or a Voltage Controlled Phase
Generator). This forms the basic circuit for self-tuned filter. See Figure 5.2. The
output of the self-tuned filter for a square-wave input, including the control voltage
waveform, is shown in Figure 5.3. The figure brings out the aspect of automatic
z
control and self-tuning.
V
~
~
In the circuit of Figure 5.1, the output of the multiplier is
page 36
RC
p
K
K
V
5.1 Brief theory and motivation
5.1.1 Multiplier as a Phase Detector
d
d
dV
d
dV
V
dV
0
x
y
r
y
r
0
0
av
~
0
z
z
i
pd
pd
0
0
#
=
=
#
=
=
c
c
=
=
c
The goal of this experiment is to learn the concept of tuning a filter. The idea
is to adjust the RC time constants of the filter so that in phase response of
a lowpass filter, the output phase w.r.t. input is exactly 90
frequency. This principle is utilized in distortion analyzers and spectrum
analyzers, such self tuned filters are used to lock on to the fundamental
frequency and harmonics of the input.
0
=
=
V
V
90
=
V
V
V V
b
x
r
2
V RC
offset
x
1
p
dV
, where
d
r
d
V
#
c
d
V RC
V
p
V
V
V
V
V
V
V
z
V
~
~
RC
z
K
K
V
$
~
+
d
d
dV
d
r
z
dV
p
V
p
V
V
V
V
av
V
V
V
r
V
z
V
RC
0
x
y
r
y
r
0
0
av
K
K
+
V V
l
c
~
z
z
1
pd
pd
0
0
0
=
#
=
=
=
is a non-linear term in
#
cos
0
y
0
0
c
~
x
y
r
y
r
0
av
=
c
$
0
RC
V
p
K
V
V
V
V
V
V
V
K
K
z
V
~
=
~
pd
pd
d
d
dV
d
dV
V
+
V
dV
V
#
d
=
s
0
0
=
r
r
0
0
V
#
av
=
=
90
=
=
x
y
V
y
V
V V
dV
0
~
z
z
i
x
pd
pd
r
0
0
=
Q
x
z
r
2
V RC
~
H
=
#
offset
#
=
=
x
=
p
c
c
#
dV
=
d
c
=
=
r
#
V
0
d
Goal of the experiment
=
c
c
0
V RC
0
=
z
V
$
+
V
V
V
V
V
V
V
V
V
z
V
~
~
RC
p
V
V
V
K
K
r
~
90
V
z
V
V
V
V
90
p
V
=
d
d
dV
d
r
dV
V
V V
av
V V
V
V V
dV
l
+
V V
c
b
0
x
y
r
y
r
0
0
av
V RC
1
x
r
2
~
0
offset
x
x
z
z
i
p
x
dV
pd
cos
pd
2
0
0
c
2
1
r
0
~
offset
#
d
y
x
=
d
=
#
=
=
r
+
#
V
c
p
dV
d
p
c
c
s
=
is the reference voltage of the multiplier. Hence, for precision
V RC
=
c
K
$
d
0
z
V
~
+
r
=
V
V
-
#
z
c
2
0
p
r
=
d
av
2
V
V V
l
c
+
V
90
=
1
K
V
x
V
V V
1
r
z
=
~
z
0
l
cos
r
r
x
y
r
2
V RC
offset
#
p
p
~
x
p
dV
av
y
$
d
V V
l
r
l
d
K
+
V
+
0
#
c
d
V RC
#
d
s
z
V
$
~
~
0
b
V
dV
r
cos
V
z
p
$
x
av
y
r
Q
r
=
~
+
z
V V
l
c
H
~
x
1
c
V
#
8
0
0
.
cos
~
+
y
c
K
y
0
0
cos
$
+
0
K
V
~
+
+
V
Q
r
d
s
K
dV
x
x
x
c
r
0
=
z
r
~
~
H
l
+
z
K
#
s
y
#
c
2
0
0
#
0
0
2
~
V
K
V
z
l
#
V
x
c
y
V
0
+
y
s
#
V
V
+
p
V
V
V
V
V
V
V
K
K
z
V
~
~
-
RC
x
d
dV
dV
2
d
d
x
dV
0
0
0
K
x
y
r
y
r
av
V
#
~
z
z
+
pd
pd
0
0
=
K
#
#
=
=
=
y
c
c
y
and
c
=
0
V
=
+
cos
#
0
=
V
y
V
V
V
90
=
#
V V
K
V RC
+
V
x
r
2
K
offset
x
p
dV
d
d
V
r
y
#
V
c
d
0
V RC
V
y
p
V
V
V
V
V
V
V
K
K
z
z
V
~
~
V
$
~
p
RC
+
x
r
d
dV
dV
V
d
d
z
V
#
p
dV
r
av
_
0
0
V V
0
l
+
#
x
y
r
y
r
av
c
#
~
1
z
z
0
i
pd
pd
0
0
0
. For a precision multiplier,
cos
=
#
#
=
y
=
=
~
K
V
c
c
c
=
Figure 5.1: Analog Multiplier
=
$
V
0
K
=
x
=
0
d
V
y
V
dV
V
V
V
90
=
#
V V
#
x
t
r
=
~
+
z
V RC
x
r
2
offset
x
#
p
y
dV
d
d
r
c
V
#
V
+
d
V
c
0
V RC
p
z
V
$
~
+
~
y
V
r
z
x
p
r
V
av
l
+
+
V V
c
#
x
1
c
0
cos
0
y
+
z
$
V
K
+
p
K
d
s
dV
y
K
x
i
r
=
~
z
H
+
0
#
y
B
c
0
0
#
#
p
~
V
V
x
V
c
0
+
s
V
y
+
2
x
K
ø
K
#
at the incoming
y
#
0
#
V
V
y
V
y
+
x
+
#
K
V
RC
V
p
V
V
V
V
V
V
V
K
K
z
V
~
~
0
d
d
dV
d
dV
V
V
dV
0
y
r
r
0
0
av
p
x
y
y
0
#
~
z
z
i
pd
pd
+
0
0
=
#
#
=
=
=
c
c
=
=
c
V
0
=
=
p
x
V
V
V
V
90
=
V V
b
#
2
V RC
x
r
offset
x
p
dV
1
(5.1)
(5.2)
d
d
r
#
V
c
d
and
V RC
V
$
z
V
~
+
r
z
p
r
av
y
V V
l
c
+
1
+
0
cos
y
~
$
K
+
d
s
p
0
dV
x
Q
r
=
~
z
H
#
c
After passing through the low-pass filter, the high frequency component gets
filtered out and only the average value of output
For
filter (VCF) automatically. The voltage-controlled filter, along with phase detector, is
called a self-tuned filter. See Figure 5.2.
Therefore,
The sensitivity of VCF is
1
0
0
V
p
V
V
V
V
V
V
V
K
K
z
V
~
~
z
V
Q
+
RC
d
dV
dV
V
d
dV
H Q V
d
d
V
d
dV
V
d
~
V
0
0
0
x
y
r
y
r
av
0
av
~
z
z
i
~
z
kHz
0
pd
pd
0
0
x
z
c
=
#
#
=
=
=
=
R
0
~
c
c
c
c
=
+
=
$
=
1
s
0
0
=
1
V
p
V
V
V
V
V
V
V
K
K
z
V
~
~
z
V
Q
RC
is called the sensitivity of the phase detector and is measured in Volts/radians.
d
dV
=
dV
V
d
=
dV
H Q V
d
d
V
d
2
dV
d
0
V
V
0
V
V
0
0
90
=
tan
=
2
x
y
r
y
r
V V
av
av
~
z
z
0
i
~
z
kHz
K
b
0
0
pd
pd
0
V RC
0
z
l
x
r
2
$
offset
=
#
#
x
=
=
=
=
p
1
-
dV
c
c
c
d
c
d
=
=
$
r
=
y
#
V
c
0
d
-
0
Figure 5.2: A Self-Tuned Filter based on a Voltage Controlled Filter
=
V RC
=
=
z
V
$
~
#
+
i
r
-
V
z
2
V
V
V
p
90
r
=
tan
=
U
V
V V
av
V V
l
+
c
b
1
2
0
1
V RC
1
G1
x
r
2
Q V
$
offset
x
0
cos
p
V
1
-
y
dV
d
d
d
~
Q
r
C
#
V
d
-
c
$
1
V RC
y
K
+
z
V
$
~
+
2
i
,
-
r
d
z
s
2
p
r
+
0
b
av
dV
l
-
+
V V
c
1
2
1
+
RC
V
x
p
V
V
V
V
V
V
V
K
K
z
V
~
~
1
Q
z
V
Q
H Q V
r
d
=
d
dV
d
~
dV
V
~
d
d
dV
Q V
z
H
0
V
~
cos
dV
d
c
y
#
0
r
r
0
0
av
~
d
Q
av
x
y
y
0
kHz
U
~
z
z
K
i
~
~
z
pd
pd
c
$
1
0
0
0
b
z
K
0
0
+
0
1
=
#
#
=
=
=
+
=
0
c
c
c
•U
=
$
becomes 0. This information is used to tune the voltage controlled
=
~
c
d
0
s
0
b
=
V
dV
Q
~
0
V
r
~
-
0
=
x
Q
2
r
=
=
~
#
~
=
x
z
H
~
c
c
V
V
V
#
V
90
=
0
~
tan
=
V V
l
r
0
+
~
2
b
s
0
2
V RC
c
b
x
r
0
0
0
$
offset
x
V
+
0
R
p
dV
1
l
-
V
R
d
~
d
2
0
V
r
Q
~
F1
7
#
V
c
V
d
2
r
n
~
-
8
x
V RC
K
$
R
z
V
~
l
+
i
x
r
c
-
z
#
2
p
r
0
~
2
av
r
0
+
V V
l
c
l
2
+
s
1
2
or Voltage Controlled Phase Generator
y
1
Q V
0
cos
l
#
y
d
V
~
2
0
Q
2
n
$
1
K
K
+
y
l
d
s
V
V
V
V
V
V
V
V
V
z
V
~
~
0
b
z
1
RC
p
K
K
dV
+
V
Q
H Q V
d
d
dV
d
dV
-
V
V
d
d
dV
U
U
x
y
dV
Q
d
r
=
~
~
y
0
x
y
z
r
y
r
0
0
av
H
~
av
0
c
2
kHz
5
#
~
z
z
i
~
z
#
pd
pd
0
0
0
z
+
#
=
~
=
=
#
=
=
c
p
c
b
c
c
0
0
=
0
$
=
+
c
0
=
0
0
R
V
V
=
~
C
V
Q
~
~
r
=
=
radians/sec/Volts. Now
6
K
1
V
V
90
=
tan
=
x
y
V
V
V V
c
0
~
b
0
x
2
V RC
l
r
0
+
0
+
offset
r
2
$
x
s
1
p
dV
-
1
1
1
d
r
d
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
z
z
z
V
V
V
V
~
~
~
~
~
~
l
z
z
-
z
V
V
1
V
1
Q
Q
Q
V
V
#
V
V
V
V
V
V
V
V
K
K
K
K
K
z
K
z
#
V
V
~
~
~
c
~
2
d
z
z
U
V
V
H Q V
H Q V
H Q V
K
K
K
K
d
d
d
d
d
dV
V RC
d
0
dV
d
dV
d
dV
d
dV
V
dV
V
V
d
d
d
d
d
dV
d
dV
dV
Q
Q
H Q V
H Q V
d
d
dV
dV
dV
dV
V
V
V
V
V
d
d
dV
dV
z
d
$
d
2
d
d
n
~
V
V
+
d
d
i
dV
V
dV
dV
-
1
d
d
d
K
r
dV
dV
d
d
K
p
z
•U
2
0
0
0
0
0
0
av
l
r
y
y
r
r
r
y
y
y
r
r
0
r
0
0
0
av
av
av
av
av
av
r
r
V
y
y
r
r
+
V V
l
av
av
c
0
0
0
1
2
V
av
av
kHz
kHz
kHz
~
~
~
z
z
z
z
z
z
0
0
i
i
i
~
~
~
z
z
z
kHz
kHz
~
~
z
z
1
z
z
i
i
~
~
z
z
0
pd
pd
pd
pd
pd
pd
0
0
0
0
0
0
0
2
Q V
0
0
y
pd
pd
pd
pd
z
z
z
F2
0
0
cos
0
0
0
0
z
z
x
y
~
d
Q
#
#
#
#
#
#
=
=
=
=
=
=
=
=
=
=
=
=
#
#
=
=
=
=
#
#
#
#
=
=
=
=
c
c
c
c
c
c
c
c
c
$
1
#
c
c
c
c
=
=
=
c
c
$
$
$
K
=
=
=
c
c
c
=
+
=
=
=
=
$
$
c
c
=
=
=
=
0
0
0
0
0
0
d
s
0
R
0
0
b
0
0
=
=
=
dV
V
=
=
-
V
x
9
r
=
=
=
Q
=
=
=
V
=
=
=
~
~
=
=
z
H
~
R
c
V
V
V
x
#
V
V
y
V
V
V
90
90
90
=
=
=
tan
tan
tan
=
=
=
V
V
V
V
V
90
90
=
=
~
3
=
=
y
V
V
V V
V V
V V
tan
tan
V V
V V
c
#
0
0
b
0
+
b
b
b
0
0
0
0
+
+
0
0
V RC
V RC
V RC
b
b
x
x
x
r
r
r
2
2
2
V RC
V RC
~
$
$
$
x
x
V
2
2
z
~
~
z
~
1
$
$
RC
r
V
r
p
V
V
x
V
x
x
V
V
V
V
K
K
V
V
r
Q
~
V
Q
H Q V
x
x
d
d
dV
d
dV
V
V
1
d
1
1
d
dV
-
-
-
p
p
p
dV
dV
dV
1
1
p
p
dV
dV
dV
d
-
-
V
0
x
y
x
r
y
r
0
d
0
d
d
av
d
d
d
av
K
d
d
r
r
r
0
c
d
d
kHz
V
V
V
~
r
r
z
z
0
i
~
z
-
-
-
p
#
#
#
V
V
pd
c
pd
c
c
0
0
d
d
d
~
r
0
-
-
#
#
c
c
d
d
z
l
0
y
+
#
=
V RC
V RC
V RC
=
s
2
=
#
=
=
V RC
V RC
c
c
c
0
z
z
z
$
$
$
=
~
~
~
+
+
+
$
i
i
+
=
V
$
V
$
V
c
l
=
z
z
of the VCF is given by
V
V
0
~
~
+
+
0
-
-
-
i
i
r
r
r
2
0
-
-
r
r
=
z
z
z
2
2
2
#
p
p
p
r
r
r
z
z
2
2
2
Analog System Lab Kit PRO
p
p
av
av
av
=
=
n
r
r
K
av
av
V V
V
V V
V V
l
V
l
l
90
c
=
c
c
tan
=
1
1
1
2
2
2
V
V V
V V
l
l
V
c
c
l
U
V V
1
1
1
1
1
2
2
p
1
1
b
0
Q V
Q V
Q V
x
2
V RC
0
0
0
3
V
offset
r
0
0
$
Q V
Q V
y
cos
cos
cos
x
1
R
cos
cos
p
dV
-
y
y
y
d
d
d
y
y
d
d
~
~
~
d
d
Q
Q
Q
V
r
~
-
~
5
Q
Q
x
#
#
c
d
V RC
z
$
+
$
$
$
1
1
1
i
V
~
$
$
-
1
1
#
r
p
z
+
+
+
2
av
r
+
+
+
V V
l
c
1
1
2
V
K
K
z
V
~
V
~
z
V
Q
H Q V
d
d
dV
d
dV
V
d
1
d
dV
d
d
d
s
s
s
0
0
0
V
0
d
d
s
s
b
Q V
b
b
dV
d
0
0
cos
dV
dV
dV
b
b
0
V
av
y
y
av
~
dV
dV
d
Q
-
-
-
0
kHz
~
z
z
i
~
z
-
-
pd
pd
0
Q
Q
Q
r
0
r
r
0
z
$
1
+
=
=
=
~
~
~
Q
Q
~
~
~
=
y
K
=
r
r
z
z
z
=
=
=
+
~
~
H
H
H
~
~
~
~
~
c
c
c
~
~
z
z
=
$
H
H
c
c
c
=
c
=
d
s
0
c
c
+
remains.
b
0
0
dV
=
-
x
r
=
=
Q
~
~
~
=
~
~
~
~
K
z
H
~
c
c
c
c
c
c
b
b
b
#
90
=
tan
=
0
0
0
0
0
0
b
b
0
0
0
0
0
0
0
~
0
0
+
+
+
0
0
0
U
b
0
+
+
0
0
p
V RC
c
2
0
0
$
b
0
0
~
~
~
0
1
p
dV
1
-
+
~
~
~
~
~
•U
d
d
~
V
V
V
r
Q
r
r
~
Q
Q
~
~
~
~
V
r
V
V
~
Q
Q
~
~
V
c
#
d
-
V
r
Q
~
r
r
V RC
$
2
z
V
~
+
i
r
x
-
z
c
2
p
r
0
c
c
c
av
c
c
~
r
c
0
0
0
l
0
+
V
1
2
0
0
s
2
~
~
~
1
~
~
r
r
r
Q V
l
l
l
r
r
0
0
0
0
l
l
2
0
2
2
0
cos
l
s
s
s
2
2
d
s
s
x
~
Q
2
0
2
$
1
n
l
l
l
K
#
+
l
l
R
l
2
2
2
0
0
0
d
s
2
2
0
0
0
b
4
dV
2
2
2
-
2
2
n
n
n
n
n
y
Q
V
=
~
~
z
H
~
c
l
l
l
#
l
l
y
~
c
b
0
0
0
+
0
+
~
V
V
Q
~
r
~
y
c
U
0
p
~
l
r
0
+
2
s
4
l
2
0
C
2
n
K
3
l
0
#
V
x
R
#
11
V
(5.3)
(5.4)
y
+
V
+
R
F3
10
V
p
3

Related parts for MIKROE-957