DSPIC33FJ128GP706-I/PT Microchip Technology, DSPIC33FJ128GP706-I/PT Datasheet - Page 93

IC DSPIC MCU/DSP 128K 64TQFP

DSPIC33FJ128GP706-I/PT

Manufacturer Part Number
DSPIC33FJ128GP706-I/PT
Description
IC DSPIC MCU/DSP 128K 64TQFP
Manufacturer
Microchip Technology
Series
dsPIC™ 33Fr

Specifications of DSPIC33FJ128GP706-I/PT

Program Memory Type
FLASH
Program Memory Size
128KB (128K x 8)
Package / Case
64-TFQFP
Core Processor
dsPIC
Core Size
16-Bit
Speed
40 MIPs
Connectivity
CAN, I²C, IrDA, LIN, SPI, UART/USART
Peripherals
AC'97, Brown-out Detect/Reset, DMA, I²S, POR, PWM, WDT
Number Of I /o
53
Ram Size
16K x 8
Voltage - Supply (vcc/vdd)
3 V ~ 3.6 V
Data Converters
A/D 18x10b/12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Product
DSCs
Data Bus Width
16 bit
Processor Series
DSPIC33F
Core
dsPIC
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
85
Data Ram Size
16 KB
Operating Supply Voltage
3 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52713-733, 52714-737, 53276-922, EWDSPIC
Data Rom Size
4096 B
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, DM240001, DV164033
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
DM300024 - KIT DEMO DSPICDEM 1.1DV164033 - KIT START EXPLORER 16 MPLAB ICD2MA330012 - MODULE DSPIC33 100P TO 84QFPMA330011 - MODULE DSPIC33 100P TO 100QFPDM300019 - BOARD DEMO DSPICDEM 80L STARTERDM240001 - BOARD DEMO PIC24/DSPIC33/PIC32AC164327 - MODULE SKT FOR 64TQFPDV164005 - KIT ICD2 SIMPLE SUIT W/USB CABLE
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC33FJ128GP706-I/PT
Manufacturer:
MICROCHIP
Quantity:
150
Part Number:
DSPIC33FJ128GP706-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC33FJ128GP706-I/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
6.3
dsPIC33F devices implement a total of 30 registers for
the interrupt controller:
• INTCON1
• INTCON2
• IFS0 through IFS4
• IEC0 through IEC4
• IPC0 through IPC17
• INTTREG
Global interrupt control functions are controlled from
INTCON1 and INTCON2. INTCON1 contains the Inter-
rupt Nesting Disable (NSTDIS) bit as well as the control
and status flags for the processor trap sources. The
INTCON2 register controls the external interrupt
request signal behavior and the use of the Alternate
Interrupt Vector Table.
The IFS registers maintain all of the interrupt request
flags. Each source of interrupt has a Status bit, which is
set by the respective peripherals or external signal and
is cleared via software.
The IEC registers maintain all of the interrupt enable
bits. These control bits are used to individually enable
interrupts from the peripherals or external signals.
© 2006 Microchip Technology Inc.
Interrupt Control and Status
Registers
Preliminary
The IPC registers are used to set the interrupt priority
level for each source of interrupt. Each user interrupt
source can be assigned to one of eight priority levels.
The INTTREG register contains the associated inter-
rupt vector number and the new CPU interrupt priority
level, which are latched into vector number (VEC-
NUM<6:0>) and Interrupt level (ILR<3:0>) bit fields in
the INTTREG register. The new interrupt priority level
is the priority of the pending interrupt.
The interrupt sources are assigned to the IFSx, IECx
and IPCx registers in the same sequence that they are
listed in Table 6-1. For example, the INT0 (External
Interrupt 0) is shown as having vector number 8 and a
natural order priority of 0. Thus, the INT0IF bit is found
in IFS0<0>, the INT0IE bit in IEC0<0>, and the INT0IP
bits in the first position of IPC0 (IPC0<2:0>).
Although they are not specifically part of the interrupt
control hardware, two of the CPU Control registers con-
tain bits that control interrupt functionality. The CPU
STATUS register, SR, contains the IPL<2:0> bits
(SR<7:5>). These bits indicate the current CPU inter-
rupt priority level. The user can change the current
CPU priority level by writing to the IPL bits.
The CORCON register contains the IPL3 bit which,
together with IPL<2:0>, also indicates the current CPU
priority level. IPL3 is a read-only bit so that trap events
cannot be masked by the user software.
All Interrupt registers are described in Register 6-1
through Register 6-32, in the following pages.
dsPIC33F
DS70165D-page 91

Related parts for DSPIC33FJ128GP706-I/PT