MC68CK16Z1CAG16 Freescale Semiconductor, MC68CK16Z1CAG16 Datasheet - Page 203

no-image

MC68CK16Z1CAG16

Manufacturer Part Number
MC68CK16Z1CAG16
Description
IC MICROPROCESSOR 16BIT 144-LQFP
Manufacturer
Freescale Semiconductor
Series
HC16r
Datasheet

Specifications of MC68CK16Z1CAG16

Core Processor
CPU16
Core Size
16-Bit
Speed
16MHz
Connectivity
EBI/EMI, SCI, SPI
Peripherals
POR, PWM, WDT
Number Of I /o
16
Program Memory Type
ROMless
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
144-LQFP
Controller Family/series
68HC16
No. Of I/o's
16
Ram Memory Size
1KB
Cpu Speed
16MHz
No. Of Timers
2
Embedded Interface Type
SCI, SPI
Rohs Compliant
Yes
Processor Series
HC16Z
Core
CPU16
Data Bus Width
16 bit
Data Ram Size
1 KB
Interface Type
SCI, SPI, UART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
16
Number Of Timers
11
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Package
144LQFP
Family Name
HC16
Maximum Speed
16 MHz
Operating Supply Voltage
3.3|5 V
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Program Memory Size
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC68CK16Z1CAG16
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC68CK16Z1CAG16
Manufacturer:
FREESCALE
Quantity:
3 600
M68HC16 Z SERIES
USER’S MANUAL
Grounding is the most important factor influencing analog circuit performance in mixed
signal systems (or in stand-alone analog systems). Close attention must be paid to
avoid introducing additional sources of noise into the analog circuitry. Common sourc-
es of noise include ground loops, inductive coupling, and combining digital and analog
grounds together inappropriately.
The problem of how and when to combine digital and analog grounds arises from the
large transients which the digital ground must handle. If the digital ground is not able
to handle the large transients, the current from the large transients can return to
ground through the analog ground. It is the excess current overflowing into the analog
ground which causes performance degradation by developing a differential voltage
between the true analog ground and the microcontroller’s ground pin. The end result
is that the ground observed by the analog circuit is no longer true ground and often
ends in skewed results.
Two similar approaches designed to improve or eliminate the problems associated
with grounding excess transient currents involve star-point ground systems. One ap-
proach is to star-point the different grounds at the power supply origin, thus keeping
the ground isolated. Refer to
Another approach is to star-point the different grounds near the analog ground pin on
the microcontroller by using small traces for connecting the non-analog grounds to the
analog ground. The small traces are meant only to accommodate DC differences, not
AC transients.
PCB
Figure 8-6 Star-Ground at the Point of Power Supply Origin
+5V
ANALOG POWER SUPPLY
Freescale Semiconductor, Inc.
AGND
ADC
For More Information On This Product,
ANALOG-TO-DIGITAL CONVERTER
Figure
Go to: www.freescale.com
+5V
VDD
VSS
8-6.
DIGITAL POWER SUPPLY
PGND
+5V
ADC POWER SCHEM
8-17

Related parts for MC68CK16Z1CAG16