DSPIC30F5011-30I/PTG Microchip Technology, DSPIC30F5011-30I/PTG Datasheet - Page 125

16BIT MCU-DSP 30MHZ, SMD, 30F5011

DSPIC30F5011-30I/PTG

Manufacturer Part Number
DSPIC30F5011-30I/PTG
Description
16BIT MCU-DSP 30MHZ, SMD, 30F5011
Manufacturer
Microchip Technology
Series
DsPIC30Fr
Datasheet

Specifications of DSPIC30F5011-30I/PTG

Core Frequency
30MHz
Embedded Interface Type
CAN, I2C, SPI, UART
No. Of I/o's
52
Flash Memory Size
66KB
Supply Voltage Range
2.5V To 5.5V
Operating Temperature Range
-40°C To
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
18.3.16
There are two transmit status bits in the DCISTAT SFR.
The TMPTY bit is set when the contents of the transmit
buffer registers are transferred to the transmit shadow
registers. The TMPTY bit may be polled in software to
determine when the transmit buffer registers may be
written. The TMPTY bit is cleared automatically by the
hardware when a write to one of the four transmit
buffers occurs.
The TUNF bit is read only and indicates that a transmit
underflow has occurred for at least one of the transmit
buffer registers that is in use. The TUNF bit is set at the
time the transmit buffer registers are transferred to the
transmit shadow registers. The TUNF status bit is
cleared automatically when the buffer register that
underflowed is written by the CPU.
18.3.17
There are two receive status bits in the DCISTAT SFR.
The RFUL status bit is read only and indicates that new
data is available in the receive buffers. The RFUL bit is
cleared automatically when all receive buffers in use
have been read by the CPU.
The ROV status bit is read only and indicates that a
receive overflow has occurred for at least one of the
receive buffer locations. A receive overflow occurs
when the buffer location is not read by the CPU before
new data is transferred from the shadow registers. The
ROV status bit is cleared automatically when the buffer
register that caused the overflow is read by the CPU.
When a receive overflow occurs for a specific buffer
location, the old contents of the buffer are overwritten.
18.3.18
The SLOT<3:0> status bits in the DCISTAT SFR indi-
cate the current active time slot. These bits will corre-
spond to the value of the frame sync generator counter.
The user may poll these status bits in software when a
DCI interrupt occurs to determine what time slot data
was last received and which time slot data should be
loaded into the TXBUF registers.
 2004 Microchip Technology Inc.
Note:
Note:
TRANSMIT STATUS BITS
The transmit status bits only indicate sta-
tus for buffer locations that are used by the
module. If the buffer length is set to less
than four words, for example, the unused
buffer locations will not affect the transmit
status bits.
RECEIVE STATUS BITS
The receive status bits only indicate status
for buffer locations that are used by the
module. If the buffer length is set to less
than four words, for example, the unused
buffer locations will not affect the transmit
status bits.
SLOT STATUS BITS
Preliminary
18.3.19
The CSDOM control bit controls the behavior of the
CSDO pin during unused transmit slots. A given trans-
mit time slot is unused if it’s corresponding TSEx bit in
the TSCON SFR is cleared.
If the CSDOM bit is cleared (default), the CSDO pin will
be low during unused time slot periods. This mode will
be used when there are only two devices attached to
the serial bus.
If the CSDOM bit is set, the CSDO pin will be tri-stated
during unused time slot periods. This mode allows mul-
tiple devices to share the same CSDO line in a multi-
channel application. Each device on the CSDO line is
configured so that it will only transmit data during
specific time slots. No two devices will transmit data
during the same time slot.
18.3.20
Digital Loopback mode is enabled by setting the
DLOOP control bit in the DCISTAT SFR. When the
DLOOP bit is set, the module internally connects the
CSDO signal to CSDI. The actual data input on the
CSDI I/O pin will be ignored in Digital Loopback mode.
18.3.21
When an underflow occurs, one of two actions may
occur depending on the state of the Underflow mode
(UNFM) control bit in the DCICON2 SFR. If the UNFM
bit is cleared (default), the module will transmit ‘0’s on
the CSDO pin during the active time slot for the buffer
location. In this Operating mode, the Codec device
attached to the DCI module will simply be fed digital
‘silence’. If the UNFM control bit is set, the module will
transmit the last data written to the buffer location. This
Operating mode permits the user to send continuous
data to the Codec device without consuming CPU
overhead.
18.4
The frequency of DCI module interrupts is dependent
on the BLEN<1:0> control bits in the DCICON2 SFR.
An interrupt to the CPU is generated each time the set
buffer length has been reached and a shadow register
transfer takes place. A shadow register transfer is
defined as the time when the previously written TXBUF
values are transferred to the transmit shadow registers
and new received values in the receive shadow
registers are transferred into the RXBUF registers.
dsPIC30F5011/5013
DCI Module Interrupts
CSDO MODE BIT
DIGITAL LOOPBACK MODE
UNDERFLOW MODE CONTROL BIT
DS70116C-page 123

Related parts for DSPIC30F5011-30I/PTG