PIC18LF8680-I/PT Microchip Technology, PIC18LF8680-I/PT Datasheet - Page 239

no-image

PIC18LF8680-I/PT

Manufacturer Part Number
PIC18LF8680-I/PT
Description
IC, 8BIT MCU, PIC18LF, 40MHZ, PLCC-64
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18LF8680-I/PT

Controller Family/series
PIC18
No. Of I/o's
39
Eeprom Memory Size
1024Byte
Ram Memory Size
3328Byte
Cpu Speed
40MHz
No. Of Timers
4
Core Size
8 Bit
Program Memory Size
32768 Words
Core Processor
PIC
Speed
40MHz
Connectivity
CAN, EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number Of I /o
68
Program Memory Type
FLASH
Eeprom Size
1K x 8
Ram Size
3.25K x 8
Voltage - Supply (vcc/vdd)
2 V ~ 5.5 V
Data Converters
A/D 16x10b
Oscillator Type
External
Operating Temperature
-40°C ~ 85°C
Package / Case
80-TFQFP
Rohs Compliant
Yes
Processor Series
PIC18LF
Core
PIC
Data Bus Width
8 bit
Data Ram Size
3328 B
Interface Type
I2C, SPI, AUSART, CAN
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
69
Number Of Timers
8
Operating Supply Voltage
2 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52715-96, 52716-328, 52717-734, 52712-325, EWPIC18
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE2000, ICE4000, DV164136, DM183032
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18LF8680-I/PT
Manufacturer:
Microchip
Quantity:
230
Part Number:
PIC18LF8680-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
18.2
The Asynchronous mode of operation is selected by
clearing the SYNC bit (TXSTA<4>). In this mode, the
USART uses standard Non-Return-to-Zero (NRZ) for-
mat (one Start bit, eight or nine data bits and one Stop
bit). The most common data format is 8 bits. An on-chip
dedicated 8-bit/16-bit Baud Rate Generator can be
used to derive standard baud rate frequencies from the
oscillator.
The USART transmits and receives the LSb first. The
USART’s transmitter and receiver are functionally inde-
pendent but use the same data format and baud rate.
The Baud Rate Generator produces a clock, either x16
or x64 of the bit shift rate depending on the BRGH and
BRG16 bits (TXSTA<2> and BAUDCON<3>). Parity is
not supported by the hardware but can be implemented
in software and stored as the 9th data bit.
Asynchronous mode is available in all low-power
modes; it is available in Sleep mode only when auto-
wake-up on sync break is enabled. When in PRI_IDLE
mode, no changes to the Baud Rate Generator values
are required; however, other low-power mode clocks
may operate at another frequency than the primary
clock. Therefore, the Baud Rate Generator values may
need to be adjusted.
When operating in Asynchronous mode, the USART
module consists of the following important elements:
• Baud Rate Generator
• Sampling Circuit
• Asynchronous Transmitter
• Asynchronous Receiver
• Auto-Wake-up on Sync Break Character
• 12-bit Break Character Transmit
• Auto-Baud Rate Detection
18.2.1
The USART transmitter block diagram is shown in
Figure 18-2. The heart of the transmitter is the Transmit
(Serial) Shift register (TSR). The Shift register obtains
its data from the read/write transmit buffer, TXREG. The
TXREG register is loaded with data in software. The
TSR register is not loaded until the Stop bit has been
transmitted from the previous load. As soon as the Stop
bit is transmitted, the TSR is loaded with new data from
the TXREG register (if available).
 2004 Microchip Technology Inc.
USART Asynchronous Mode
USART ASYNCHRONOUS
TRANSMITTER
PIC18F6585/8585/6680/8680
Once the TXREG register transfers the data to the TSR
register (occurs in one T
empty and flag bit TXIF (PIR1<4>) is set. This interrupt
can be enabled/disabled by setting/clearing enable bit
TXIE (PIE1<4>). Flag bit TXIF will be set regardless of
the state of enable bit TXIE and cannot be cleared in
software. Flag bit TXIF is not cleared immediately upon
loading the Transmit Buffer register, TXREG. TXIF
becomes valid in the second instruction cycle following
the load instruction. Polling TXIF immediately following
a load of TXREG will return invalid results.
While flag bit TXIF indicates the status of the TXREG
register, another bit, TRMT (TXSTA<1>), shows the
status of the TSR register. Status bit TRMT is a read-
only bit which is set when the TSR register is empty. No
interrupt logic is tied to this bit, so the user has to poll
this bit in order to determine if the TSR register is
empty.
To set up an Asynchronous Transmission:
1.
2.
3.
4.
5.
6.
7.
If using interrupts, ensure that the GIE and PEIE bits in
the INTCON register (INTCON<7:6>) are set.
Note:
Note 1: The TSR register is not mapped in data
Initialize the SPBRGH:SPBRG registers for the
appropriate baud rate. Set or clear the BRGH
and BRG16 bits, as required, to achieve the
desired baud rate.
Enable the asynchronous serial port by clearing
bit SYNC and setting bit SPEN.
If interrupts are desired, set enable bit TXIE.
If 9-bit transmission is desired, set transmit bit
TX9. Can be used as address/data bit.
Enable the transmission by setting bit TXEN
which will also set bit TXIF.
If 9-bit transmission is selected, the ninth bit
should be loaded in bit TX9D.
Load data to the TXREG register (starts
transmission).
2: Flag bit TXIF is set when enable bit TXEN
When BRGH and BRG16 bits are set,
SPBRGH:SPBRG must be more than ‘1’.
memory so it is not available to the user.
is set.
CY
), the TXREG register is
DS30491C-page 237

Related parts for PIC18LF8680-I/PT