ADV7173KST Analog Devices Inc, ADV7173KST Datasheet - Page 15

IC DAC VIDEO NTSC 6-CH 48LQFP

ADV7173KST

Manufacturer Part Number
ADV7173KST
Description
IC DAC VIDEO NTSC 6-CH 48LQFP
Manufacturer
Analog Devices Inc
Type
Video Encoderr
Datasheet

Specifications of ADV7173KST

Rohs Status
RoHS non-compliant
Applications
Multimedia
Voltage - Supply, Analog
4.75 V ~ 5.25 V
Mounting Type
Surface Mount
Package / Case
48-LQFP
Number Of Dac's
6
Adc/dac Resolution
10b
Screening Level
Commercial
Package Type
LQFP
Pin Count
48
For Use With
EVAL-ADV7173EBM - BOARD EVAL FOR ADV7173
Voltage - Supply, Digital
-
Lead Free Status / RoHS Status
Not Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ADV7173KST
Manufacturer:
AD
Quantity:
1 831
Part Number:
ADV7173KST-REEL
Manufacturer:
AD
Quantity:
1
Part Number:
ADV7173KSTZ
Manufacturer:
ADI
Quantity:
1 135
Part Number:
ADV7173KSTZ
Manufacturer:
Analog Devices Inc
Quantity:
10 000
Part Number:
ADV7173KSTZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
ADV7173KSTZ-REEL
Manufacturer:
ADI
Quantity:
7 101
Part Number:
ADV7173KSTZ-REEL
Manufacturer:
Analog Devices Inc
Quantity:
10 000
YUV LEVELS
This functionality is under the control of Mode Register 5, Bits
2–0. Bit 0 (MR50) allows the ADV7172/ADV7173 to output
SMPTE levels on the Y output when configured in NTSC mode,
and Betacam levels on the Y output when configured in PAL
mode and vice-versa.
Betacam
SMPTE
MII
As the datapath is branched at the output of the filters, the
luma signal relating to the CVBS or S-Video Y/C output is
unaltered. Only the Y output of the YUV outputs is scaled.
Bits 2–1 (MR52–MR51) allow UV levels to have a peak-peak
amplitude of 700 mV or 1000 mV, or the default values of
934 mV in NTSC and 700 mV in PAL.
AUTODETECT CONTROL
The ADV7172/ADV7173 provides the option of automatically
powering down the DACs A, B and C if they are not correctly
terminated (i.e., the 75 Ω cable is not connected to the DAC).
The voltage at the output of DACs A and B are compared to
a selected reference level. This reference voltage (MR64) will
depend on whether the user terminates with 37.5 Ω (75 Ω con-
nected on the DAC end and 75 Ω connected at TV end of cable,
i.e., combined load of 37.5 Ω) or 75 Ω. It cannot operate in a
DAC buffering configuration. There are two modes of auto-
detect operation provided by the ADV7172/ADV7173:
(1) Mode 0: The state of termination of the DAC may be read
by reading the status bits in Mode Register 6. MR67 status bit
indicates whether or not the composite DAC is terminated,
MR66 status bit indicates whether or not the luma DAC is
terminated. The user may then decide whether or not to power
down the DACs using MR15–MR0.
(2) Mode 1: The state of the DACs may be read as in Mode 0.
If either of the DACs is unterminated, they are automatically
powered down. If the luma DAC, DAC B is powered down then
DAC C, the chroma DAC, will also be powered down. The
state of termination of the DAC is checked each frame to decide
whether or not it is to be powered up or down.
Mode Register 6, Bits 3–2, indicates which mode of operation is
used. Note that Mode Register 1, Bits 5-3, must be enabled
(“1”) for autodetect functionality to work. (DACs A, B, C are
enabled.)
Vertical Blanking Data Insertion
It is possible to allow encoding of incoming YCbCr data on
those lines of VBI that do not have line sync or pre-/post-
equalization pulses (see Figures 24 to 25). This mode of
operation is called “Partial Blanking” and is selected by setting
MR32 to “1.” It allows the insertion of any VBI data (Opened
VBI) into the encoded output waveform. This data is present in
digitized incoming YCbCr data stream (e.g., WSS data, CGMS,
VPS etc.). Alternatively the entire VBI may be blanked (no VBI
data inserted) on these lines by setting MR32 to “0.”
Video
286 mV
300 mV
300 mV
Sync
714 mV
700 mV
700 mV
SUBCARRIER RESET
Together with the SCRESET/RTC PIN and Bits MR42 and
MR41 of Mode Register 4, the ADV7172/ADV7173 can be
used in subcarrier reset mode. The subcarrier phase will reset to
Field 0 at the start of the following field when a low to high
transition occurs on this input pin.
REAL-TIME CONTROL
Together with the SCRESET/RTC PIN and Bits MR42 and
MR41 of Mode Register 4, the ADV7172/ADV7173 can be
used to lock to an external video source. The real-time control
mode allows the ADV7172/ADV7173 to automatically alter the
subcarrier frequency to compensate for line length variation.
When the part is connected to a device that outputs a digital
data stream in the RTC format (such as a ADV7185 video
decoder, see Figure 22), the part will automatically change to
the compensated subcarrier frequency on a line-by-line basis.
This digital data stream is 67 bits wide and the subcarrier is
contained in Bits 0 to 21. Each bit is two clock cycles long. 00Hex
should be written into all four subcarrier frequency registers
when using this mode.
VIDEO TIMING DESCRIPTION
The ADV7172/ADV7173 is intended to interface to off-the-
shelf MPEG1 and MPEG2 Decoders. As a consequence, the
ADV7172/ADV7173 accepts 4:2:2 YCrCb Pixel Data via a
CCIR-656 pixel port and has several video timing modes of
operation that allow it to be configured as either system master
video timing generator or a slave to the system video timing
generator. The ADV7172/ADV7173 generates all of the required
horizontal and vertical timing periods and levels for the analog
video outputs.
The ADV7172/ADV7173 calculates the width and placement
of analog sync pulses, blanking levels and color burst envelopes.
Color bursts are disabled on appropriate lines and serration and
equalization pulses are inserted where required.
In addition, the ADV7172/ADV7173 supports a PAL or NTSC
square pixel operation in slave mode. The part requires an input
pixel clock of 24.5454 MHz for NTSC and an input pixel clock
of 29.5 MHz for PAL. The internal horizontal line counters place
the various video waveform sections in the correct location for
the new clock frequencies.
The ADV7172/ADV7173 has four distinct master and four
distinct slave timing configurations. Timing control is estab-
lished with the bidirectional SYNC, BLANK, and FIELD/
VSYNC pins. Timing Mode Register 1 can also be used to
vary the timing pulsewidths and where they occur in relation to
each other.
ADV7172/ADV7173

Related parts for ADV7173KST