ATmega16M1 Automotive Atmel Corporation, ATmega16M1 Automotive Datasheet - Page 55

no-image

ATmega16M1 Automotive

Manufacturer Part Number
ATmega16M1 Automotive
Description
Manufacturer
Atmel Corporation

Specifications of ATmega16M1 Automotive

Flash (kbytes)
16 Kbytes
Pin Count
32
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
12
Hardware Qtouch Acquisition
No
Max I/o Pins
27
Ext Interrupts
27
Usb Speed
No
Usb Interface
No
Spi
1
Uart
1
Can
1
Lin
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
11
Adc Resolution (bits)
10
Adc Speed (ksps)
125
Analog Comparators
4
Resistive Touch Screen
No
Dac Channels
1
Dac Resolution (bits)
10
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
1
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 150
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
14
Input Capture Channels
1
Pwm Channels
10
32khz Rtc
No
Calibrated Rc Oscillator
Yes
7.4.1
7647G–AVR–09/11
Watchdog Timer Control Register - WDTCSR
• Bit 7 - WDIF: Watchdog Interrupt Flag
This bit is set when a time-out occurs in the Watchdog Timer and the Watchdog Timer is con-
figured for interrupt. WDIF is cleared by hardware when executing the corresponding interrupt
handling vector. Alternatively, WDIF is cleared by writing a logic one to the flag. When the I-bit
in SREG and WDIE are set, the Watchdog Time-out Interrupt is executed.
• Bit 6 - WDIE: Watchdog Interrupt Enable
When this bit is written to one and the I-bit in the Status Register is set, the Watchdog Interrupt
is enabled. If WDE is cleared in combination with this setting, the Watchdog Timer is in Inter-
rupt Mode, and the corresponding interrupt is executed if time-out in the Watchdog Timer
occurs.
If WDE is set, the Watchdog Timer is in Interrupt and System Reset Mode. The first time-out in
the Watchdog Timer will set WDIF. Executing the corresponding interrupt vector will clear
WDIE and WDIF automatically by hardware (the Watchdog goes to System Reset Mode). This
is useful for keeping the Watchdog Timer security while using the interrupt. To stay in Interrupt
and System Reset Mode, WDIE must be set after each interrupt. This should however not be
done within the interrupt service routine itself, as this might compromise the safety-function of
the Watchdog System Reset mode. If the interrupt is not executed before the next time-out, a
System Reset will be applied.
Table 7-5.
Note:
• Bit 4 - WDCE: Watchdog Change Enable
This bit is used in timed sequences for changing WDE and prescaler bits. To clear the WDE
bit, and/or change the prescaler bits, WDCE must be set.
Once written to one, hardware will clear WDCE after four clock cycles.
• Bit 3 - WDE: Watchdog System Reset Enable
WDE is overridden by WDRF in MCUSR. This means that WDE is always set when WDRF is
set. To clear WDE, WDRF must be cleared first. This feature ensures multiple resets during
conditions causing failure, and a safe start-up after the failure.
• Bit 5, 2..0 - WDP3..0: Watchdog Timer Prescaler 3, 2, 1 and 0
The WDP3..0 bits determine the Watchdog Timer prescaling when the Watchdog Timer is run-
ning. The different prescaling values and their corresponding time-out periods are shown in
Table 7-6 on page
Bit
Read/Write
Initial Value
WDTON
0
0
0
0
1
1. For the WDTON Fuse “1” means unprogrammed while “0” means programmed.
(1)
Watchdog Timer Configuration
WDIF
R/W
7
0
WDE
56.
0
0
1
1
x
WDIE
R/W
6
0
WDIE
0
1
0
1
x
WDP3
R/W
5
0
Atmel ATmega16/32/64/M1/C1
Mode
Stopped
Interrupt Mode
System Reset Mode
Interrupt and System Reset
Mode
System Reset Mode
WDCE
R/W
4
0
WDE
R/W
3
X
WDP2
R/W
2
0
Action on Time-out
None
Interrupt
Reset
Interrupt, then go to
System Reset Mode
Reset
WDP1
R/W
1
0
WDP0
R/W
0
0
WDTCSR
55

Related parts for ATmega16M1 Automotive