ATtiny85 Atmel Corporation, ATtiny85 Datasheet - Page 12

no-image

ATtiny85

Manufacturer Part Number
ATtiny85
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATtiny85

Flash (kbytes)
8 Kbytes
Pin Count
8
Max. Operating Frequency
20 MHz
Cpu
8-bit AVR
# Of Touch Channels
3
Hardware Qtouch Acquisition
No
Max I/o Pins
6
Ext Interrupts
6
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
4
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
0.5
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8 to 5.5
Operating Voltage (vcc)
1.8 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
5
Pwm Channels
6
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATtiny85-15SZ
Manufacturer:
ATMEL
Quantity:
30
Part Number:
ATtiny85-20PU
Manufacturer:
CUI
Quantity:
1 000
Part Number:
ATtiny85-20SU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATtiny85V-10SH
Manufacturer:
Intel
Quantity:
62
Part Number:
ATtiny85V-10SU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
4.7
4.8
12
Instruction Execution Timing
Reset and Interrupt Handling
ATtiny25/45/85
This section describes the general access timing concepts for instruction execution. The AVR
CPU is driven by the CPU clock clk
chip. No internal clock division is used.
Figure 4-4
vard architecture and the fast access Register File concept. This is the basic pipelining concept
to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost,
functions per clocks, and functions per power-unit.
Figure 4-4.
Figure 4-5
operation using two register operands is executed, and the result is stored back to the destina-
tion register.
Figure 4-5.
The AVR provides several different interrupt sources. These interrupts and the separate Reset
Vector each have a separate Program Vector in the Program memory space. All interrupts are
assigned individual enable bits which must be written logic one together with the Global Interrupt
Enable bit in the Status Register in order to enable the interrupt.
The lowest addresses in the Program memory space are by default defined as the Reset and
Interrupt Vectors. The complete list of vectors is shown in
determines the priority levels of the different interrupts. The lower the address the higher is the
priority level. RESET has the highest priority, and next is INT0 – the External Interrupt Request
0.
Register Operands Fetch
2nd Instruction Execute
3rd Instruction Execute
1st Instruction Execute
ALU Operation Execute
2nd Instruction Fetch
3rd Instruction Fetch
4th Instruction Fetch
1st Instruction Fetch
Total Execution Time
shows the internal timing concept for the Register File. In a single clock cycle an ALU
shows the parallel instruction fetches and instruction executions enabled by the Har-
Result Write Back
The Parallel Instruction Fetches and Instruction Executions
Single Cycle ALU Operation
clk
clk
CPU
CPU
CPU
T1
T1
, directly generated from the selected clock source for the
T2
T2
“Interrupts” on page
T3
T3
50. The list also
2586N–AVR–04/11
T4
T4

Related parts for ATtiny85