AD5735 Analog Devices, AD5735 Datasheet - Page 27

no-image

AD5735

Manufacturer Part Number
AD5735
Description
Quad Channel, 12-Bit, Serial Input, 4-20 mA & Voltage Output DAC with Dynamic Power Control
Manufacturer
Analog Devices
Datasheet

Specifications of AD5735

Resolution (bits)
12bit
Dac Settling Time
11µs
Max Pos Supply (v)
+33V
Single-supply
No
Dac Type
I or V Out
Dac Input Format
SPI
Digital-to-Analog Glitch Energy
Digital-to-analog glitch energy is the impulse injected into
the analog output when the input code in the DAC register
changes state but the output voltage remains constant. It is
normally specified as the area of the glitch in nV-sec and is
measured when the digital input code is changed by 1 LSB at
the major carry transition (~0x7FFF to 0x8000). See Figure 25.
Glitch Impulse Peak Amplitude
Glitch impulse peak amplitude is the peak amplitude of the
impulse injected into the analog output when the input code in
the DAC register changes state. It is specified as the amplitude
of the glitch in mV and is measured when the digital input code
is changed by 1 LSB at the major carry transition (~0x7FFF to
0x8000). See Figure 25.
Digital Feedthrough
Digital feedthrough is a measure of the impulse injected into
the analog output of the DAC from the digital inputs of the
DAC but is measured when the DAC output is not updated. It is
specified in nV-sec and measured with a full-scale code change
on the data bus.
DAC-to-DAC Crosstalk
DAC-to-DAC crosstalk is the glitch impulse transferred to the
output of one DAC due to a digital code change and a subsequent
output change of another DAC. DAC-to-DAC crosstalk includes
both digital and analog crosstalk. It is measured by loading one
DAC with a full-scale code change (all 0s to all 1s and vice versa)
with LDAC low while monitoring the output of another DAC.
The energy of the glitch is expressed in nV-sec.
Power Supply Rejection Ratio (PSRR)
PSRR indicates how the output of the DAC is affected by changes
in the power supply voltage.
Data Sheet
Rev. A | Page 27 of 48
Reference Temperature Coefficient (TC)
Reference TC is a measure of the change in the reference output
voltage with changes in temperature. It is expressed in ppm/°C.
Line Regulation
Line regulation is the change in the reference output voltage due
to a specified change in supply voltage. It is expressed in ppm/V.
Load Regulation
Load regulation is the change in the reference output voltage due
to a specified change in load current. It is expressed in ppm/mA.
DC-to-DC Converter Headroom
DC-to-DC converter headroom is the difference between the
voltage required at the current output and the voltage supplied
by the dc-to-dc converter (see Figure 51).
Output Efficiency
Output efficiency is defined as the ratio of the power delivered
to a channel’s load and the power delivered to the channel’s
dc-to-dc input. The V
part of the dc-to-dc converter’s losses.
Efficiency at V
The efficiency at V
delivered to a channel’s V
to the channel’s dc-to-dc input. The V
considered part of the dc-to-dc converter’s losses.
I
I
AV
OUT
OUT
AV
CC
2
CC
×
×
×
V
×
R
AI
BOOST
AI
LOAD
BOOST_x
CC
CC
BOOST_x
_
x
BOOST_x
BOOST_x
is defined as the ratio of the power
quiescent current is considered
supply and the power delivered
BOOST_x
quiescent current is
AD5735

Related parts for AD5735