adsp-21367kbpz-2a Analog Devices, Inc., adsp-21367kbpz-2a Datasheet - Page 10

no-image

adsp-21367kbpz-2a

Manufacturer Part Number
adsp-21367kbpz-2a
Description
Sharc Processors
Manufacturer
Analog Devices, Inc.
Datasheet
ADSP-21367/ADSP-21368/ADSP-21369
Target Board JTAG Emulator Connector
Analog Devices DSP Tools product line of JTAG emulators uses
the IEEE 1149.1 JTAG test access port of the ADSP-21367/
ADSP-21368/ADSP-21369 processors to monitor and control
the target board processor during emulation. Analog Devices
DSP Tools product line of JTAG emulators provides emulation
at full processor speed, allowing inspection and modification of
memory, registers, and processor stacks. The processor’s JTAG
interface ensures that the emulator will not affect target system
loading or timing.
For complete information on Analog Devices’ SHARC DSP
Tools product line of JTAG emulator operation, see the appro-
priate “Emulator Hardware User’s Guide.”
DEVELOPMENT TOOLS
The processors are supported with a complete set of CROSS-
CORE
Analog Devices emulators and VisualDSP++
environment. The same emulator hardware that supports other
SHARC processors also fully emulates the ADSP-21367/ADSP-
21368/ADSP-21369.
The VisualDSP++ project management environment lets pro-
grammers develop and debug an application. This environment
includes an easy to use assembler (which is based on an alge-
braic syntax), an archiver (librarian/library builder), a linker, a
loader, a cycle-accurate instruction-level simulator, a C/C++
compiler, and a C/C++ runtime library that includes DSP and
mathematical functions. A key point for these tools is C/C++
code efficiency. The compiler has been developed for efficient
translation of C/C++ code to DSP assembly. The SHARC has
architectural features that improve the efficiency of compiled
C/C++ code.
The VisualDSP++ debugger has a number of important fea-
tures. Data visualization is enhanced by a plotting package that
offers a significant level of flexibility. This graphical representa-
tion of user data enables the programmer to quickly determine
the performance of an algorithm. As algorithms grow in com-
plexity, this capability can have increasing significance on the
designer’s development schedule, increasing productivity. Sta-
tistical profiling enables the programmer to nonintrusively poll
the processor as it is running the program. This feature, unique
to VisualDSP++, enables the software developer to passively
gather important code execution metrics without interrupting
the real-time characteristics of the program. Essentially, the
V
DDINT
®
software and hardware development tools, including
HI-Z FERRITE
BEAD CHIP
Figure 2. Analog Power (A
CLOSE TO A
100nF
LOCATE ALL COMPONENTS
VDD
10nF
AND A
VDD
) Filter Circuit
VSS
1nF
PINS
®
development
Rev. A | Page 10 of 56 | August 2006
ADSP-213xx
A
A
VDD
VSS
developer can identify bottlenecks in software quickly and effi-
ciently. By using the profiler, the programmer can focus on
those areas in the program that impact performance and take
corrective action.
Debugging both C/C++ and assembly programs with the
VisualDSP++ debugger, programmers can:
The VisualDSP++ IDDE lets programmers define and manage
DSP software development. Its dialog boxes and property pages
let programmers configure and manage all of the SHARC devel-
opment tools, including the color syntax highlighting in the
VisualDSP++ editor. This capability permits programmers to:
The VisualDSP++ Kernel (VDK) incorporates scheduling and
resource management tailored specifically to address the mem-
ory and timing constraints of DSP programming. These
capabilities enable engineers to develop code more effectively,
eliminating the need to start from the very beginning, when
developing new application code. The VDK features include
threads, critical and unscheduled regions, semaphores, events,
and device flags. The VDK also supports priority-based, pre-
emptive, cooperative, and time-sliced scheduling approaches. In
addition, the VDK was designed to be scalable. If the application
does not use a specific feature, the support code for that feature
is excluded from the target system.
Because the VDK is a library, a developer can decide whether to
use it or not. The VDK is integrated into the VisualDSP++
development environment, but can also be used via standard
command line tools. When the VDK is used, the development
environment assists the developer with many error-prone tasks
and assists in managing system resources, automating the gen-
eration of various VDK-based objects, and visualizing the
system state, when debugging an application that uses the VDK.
VisualDSP++ Component Software Engineering (VCSE) is
Analog Devices’ technology for creating, using, and reusing
software components (independent modules of substantial
functionality) to quickly and reliably assemble software
applications. The user can download components from the
Web, drop them into the application, and publish component
archives from within VisualDSP++. VCSE supports component
implementation in C/C++ or assembly language.
• View mixed C/C++ and assembly code (interleaved source
• Insert breakpoints
• Set conditional breakpoints on registers, memory,
• Trace instruction execution
• Perform linear or statistical profiling of program execution
• Fill, dump, and graphically plot the contents of memory
• Perform source level debugging
• Create custom debugger windows
• Control how the development tools process inputs and
• Maintain a one-to-one correspondence with the tool’s
and object information)
and stacks
generate outputs
command line switches

Related parts for adsp-21367kbpz-2a