TDA9898HL/V3 NXP [NXP Semiconductors], TDA9898HL/V3 Datasheet

no-image

TDA9898HL/V3

Manufacturer Part Number
TDA9898HL/V3
Description
Multistandard hybrid IF processing
Manufacturer
NXP [NXP Semiconductors]
Datasheet
1. General description
2. Features
2.1 General
2.2 Analog TV processing
The Integrated Circuit (IC) is suitable for Intermediate Frequency (IF) processing including
global multistandard Analog TV (ATV), Digital Video Broadcast (DVB) and mono FM radio
using only 1 IC and 1 to 3 fixed Surface Acoustic Waves (SAWs) (application dependent).
TDA9898 includes, TDA9897 excludes L and L-accent standard.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
TDA9897; TDA9898
Multistandard hybrid IF processing
Rev. 04 — 25 May 2009
5 V supply voltage
I
Four I
Three I
Separate gain controlled amplifiers with input selector and conversion for incoming IF
[analog Vision IF (VIF) or Sound IF (SIF) or Digital TV (DTV)] allows the use of
different filter shapes and bandwidths
All conventional ATV standards applicable by using DTV bandwidth window (SAW)
filter
Two 4 MHz reference frequency stages; the first one operates as crystal oscillator, the
second one as external signal input
Stabilizer circuit for ripple rejection and to achieve constant output signals
Smallest size, simplest application
ElectroStatic Discharge (ESD) protection for all pins
Gain controlled wideband VIF amplifier; AC-coupled
Multistandard true synchronous demodulation with active carrier regeneration: very
linear demodulation, good intermodulation figures, reduced harmonics and excellent
pulse response
Integrated Nyquist processing, providing additionally image suppression for high
adjacent channel selectivity
Optional use of conventional Nyquist filter to support a wide range of applications
Gated phase detector for L and L-accent standards
Fully integrated VIF Voltage-Controlled Oscillator (VCO), alignment-free, frequencies
switchable for all negative and positive modulated standards via I
VIF Automatic Gain Control (AGC) detector for gain control; operating as a peak sync
detector for negative modulated signals and as a peak white detector for positive
modulated signals
2
C-bus control over all functions
2
C-bus addresses provided; selection by programmable Module Address (MAD)
2
C-bus voltage level supported; selection via pin BVS
Product data sheet
2
C-bus

Related parts for TDA9898HL/V3

TDA9898HL/V3 Summary of contents

Page 1

TDA9897; TDA9898 Multistandard hybrid IF processing Rev. 04 — 25 May 2009 1. General description The Integrated Circuit (IC) is suitable for Intermediate Frequency (IF) processing including global multistandard Analog TV (ATV), Digital Video Broadcast (DVB) and mono FM radio ...

Page 2

NXP Semiconductors I Optimized AGC modes for negative modulation; e.g. very fast reaction time for VIF and SIF I Precise fully digital Automatic Frequency Control (AFC) detector with 4-bit Digital-to-Analog Converter (DAC); AFC bits can be read-out via I I ...

Page 3

NXP Semiconductors 2.4 FM radio mode I Gain controlled wideband Radio IF (RIF) amplifier; AC-coupled I Buffered RIF amplifier wideband output, gain controlled by internal RIF AGC I Use of external FM sound BP filter I 2nd RIF output, gain ...

Page 4

NXP Semiconductors Table 1. Quick reference data amb Symbol Parameter video bandwidth video( 3dB) first sound carrier attenuation SC1 (S/N) weighted signal-to-noise ratio w PSRR power supply ripple ...

Page 5

NXP Semiconductors Table 1. Quick reference data amb Symbol Parameter V RMS output voltage o(RMS) FM sound part V RMS FM input voltage i(FM)(RMS change of AFC current ...

Page 6

NXP Semiconductors Table 1. Quick reference data amb Symbol Parameter synthesizer phase noise n(synth) low IF pass-band ripple ripple(pb)LIF stop-band attenuation stpb image rejection image C/N carrier-to-noise ratio Reference frequency input ...

Page 7

... Ordering information Table 2. Ordering information Type number Package Name TDA9897HL/V3 LQFP48 TDA9897HN/V3 HVQFN48 TDA9898HL/V3 LQFP48 TDA9898HN/V3 HVQFN48 TDA9897_TDA9898_4 Product data sheet Description plastic low profile quad flat package; 48 leads; body 7 plastic thermal enhanced very thin quad flat package; no leads; 48 terminals; body ...

Page 8

NXP Semiconductors 6. Block diagram SDA SCL i. TDA9898 36 AGCDIN 3 IF3A 4 IF3B 6 IF1A 7 IF1B 9 IF2A 10 IF2B CIFAGC 5 45 i.c. TOP1 PEAK AGC TUNER 47 TAGC 48 GND Fig 1. ...

Page 9

NXP Semiconductors V GNDA P 43, 44 40, 41 SUPPLY A B TDA9898 C BAND-PASS FILTER (1) Optional. (2) Connect resistor if input or crystal is not used. Fig 2. Block diagram of TDA9898 ...

Page 10

NXP Semiconductors SDA SCL i. TDA9897 36 AGCDIN 3 IF3A 4 IF3B 6 IF1A 7 IF1B 9 IF2A 10 IF2B 45 i.c. TOP1 PEAK AGC TUNER 47 TAGC 48 GND n.c. Fig 3. Block diagram of ...

Page 11

NXP Semiconductors V GNDA P 40, 41 43, 44 SUPPLY A B TDA9897 C BAND-PASS FILTER (1) Optional. (2) Connect resistor if input or crystal is not used. Fig 4. Block diagram of TDA9897 ...

Page 12

NXP Semiconductors 7. Pinning information 7.1 Pinning (1) Not connected for TDA9897HL. Fig 5. TDA9897_TDA9898_4 Product data sheet 1 LFSYN2 n.c. 2 IF3A 3 IF3B 4 (1) 5 CIFAGC IF1A 6 IF1B 7 8 CTAGC 9 IF2A IF2B 10 TOP2 ...

Page 13

NXP Semiconductors (1) Not connected for TDA9897HN. Fig 6. 7.2 Pin description Table 3. Symbol LFSYN2 n.c. IF3A IF3B CIFAGC IF1A IF1B CTAGC IF2A IF2B TOP2 PORT1 LFVIF i.c. EXTFILO TDA9897_TDA9898_4 Product data sheet terminal 1 index area LFSYN2 1 ...

Page 14

NXP Semiconductors Table 3. Symbol MPP EXTFILI n.c. LFFM CDEEM EXTFMI GNDD SDA SCL ADRSEL OUT1A OUT1B CAF OUT2A OUT2B AUD BVS CVBS GDS PORT2 AGCDIN n.c. LFSYN1 OPTXTAL GNDA GNDA PORT3 i.c. FREF TAGC GND ...

Page 15

NXP Semiconductors 8. Functional description 8.1 IF input switch Different signal bandwidth can be handled by using two signal processing chains with individual gain control. Switch configuration allows independent selection of filter for analog VIF and for analog SIF (used ...

Page 16

NXP Semiconductors 8.3.3 Tuner AGC Independent integral tuner gain control loop (not nested with VIF AGC). Integral characteristic provides high control accuracy. Accurate setting of tuner control onset (TOP) for integral tuner gain control loop via 2 I C-bus. For ...

Page 17

NXP Semiconductors 8.6 DIF/SIF converter stage Frequency conversion with sideband suppression. Selection mode of upper or lower sideband for pass or suppression. Suppression around zero for frequency conversion. Conversion mode selection via synthesizer for DIF and radio mode or via ...

Page 18

NXP Semiconductors 8.9 Synthesizer The synthesizer supports SIF/DIF frequency conversion. A large set of synthesizer frequencies in steps of 0.5 MHz enables flexible combination of SAW filter and required conversion frequency. Synthesizer loop internally adapted to divider ratio range for ...

Page 19

NXP Semiconductors 9.1 Read format S Fig 7. Table 6. 7 AFCWIN Table 7. Bit [ input is applied, then bit AFCWIN can be logic 1 due to the fact ...

Page 20

NXP Semiconductors Table the nominal frequency. nom Bit AFC4 R1[ [1] In ATV mode f means vision intermediate frequency; in radio ...

Page 21

NXP Semiconductors Table 11. Bit VAGC5 R2[ ...

Page 22

NXP Semiconductors Table 11. Bit VAGC5 R2[ [1] The reference of 0 (TOP) can be ...

Page 23

NXP Semiconductors 9.2 Write format S BYTE R/W slave address 0 from master to slave from slave to master 2 Fig 8. I C-bus write format (slave receives data) 9.2.1 Subaddress Table 12 Table ...

Page 24

NXP Semiconductors 2 Table 15. I C-bus write register overview The register setting after power-on is not specified. Register 7 6 [1] W1 RADIO STD1 [2] W2 MOD STD4 [3] W3 RESCAR AMUTE [4] W4 VIFLEVEL BP [5] W5 FSFREQ1 ...

Page 25

NXP Semiconductors Table 18. Intercarrier sound BP and FM PLL frequency select for ATV, QSS mode For description of bit MOD refer to Bit RADIO MOD STD1 W1[7] W2[7] W1[ ...

Page 26

NXP Semiconductors Table 21. 2nd intercarrier and sound I/O switching Switch input numbering in accordance with AMMODE MOD FM EXTFIL Audio W4[3] W2[7] W1[1] W1[ ...

Page 27

NXP Semiconductors Table 22. 7 MOD Table 23. Bit TDA9897_TDA9898_4 Product data sheet W2 - data write register bit allocation STD4 STD3 STD2 W2 - data write register bit ...

Page 28

NXP Semiconductors Table 24. Bit VIF31875 W11[ [1] Register W11 is logical AND protected by bit W8[7]. Therefore it is required to set ...

Page 29

NXP Semiconductors Table 26. 7 RESCAR Table 27. Bit and 0 TDA9897_TDA9898_4 Product data sheet W3 - data write register bit allocation AMUTE FMUTE FMWIDE0 W3 - data write register ...

Page 30

NXP Semiconductors Table 28. 7 VIFLEVEL Table 29. Bit and and 1 0 [1] Not recommended in combination with internal video level set to reduced (W7[4] = 1). Table 30. Bit TV W1[4] 0 ...

Page 31

NXP Semiconductors Table 31. Bit VAGC W7[ Table 32. 7 FSFREQ1 Table 33. Bit 7 and TDA9897_TDA9898_4 Product data sheet Output mode at pin MPP for ATV or radio mode ...

Page 32

NXP Semiconductors Table 34. Bit SFREQ5 W5[ ...

Page 33

NXP Semiconductors Table 34. Bit SFREQ5 W5[ Table 35. Bit SFREQ5 W5[5] 1 TDA9897_TDA9898_4 Product ...

Page 34

NXP Semiconductors Table 36. 7 TAGC1 Table 37. Bit 7 and 6 TAGC[1:0] 5 and 4 AGC[2: [1] In TAGC integral loop mode the pin TAGC provides sink and source currents for control. TakeOver Point (TOP) ...

Page 35

NXP Semiconductors Table 39. 7 EXTFILO Table 40. Bit [1] Not recommended in combination with internal IF level set to reduced (W4[7] = 1). [2] At internal Nyquist processing off (W7[0] = ...

Page 36

NXP Semiconductors Table 41. 7 FEATURE AVIDRED Table 42. Bit TDA9897_TDA9898_4 Product data sheet W8 - data write register bit allocation MODEP3 TAGCIN3 W8 - data write register bit ...

Page 37

NXP Semiconductors Table 43 data write register bit allocation 7 6 DAGCSLOPE TAGCIS Table 44 data write register bit description Bit Symbol Description 7 DAGCSLOPE AGCDIN input characteristic; see 6 TAGCIS tuner AGC IF input (TOP1) ...

Page 38

NXP Semiconductors Table 47. W10 - data write register bit description Bit Symbol Description 5 XPOTPOS TOP derived from IF AGC via TOPPOS[4:0] TOP adjustment for TAGC derived from IF AGC (TOP2); recommended for positive modulation; ...

Page 39

NXP Semiconductors Table 50. W11 - data write register bit description Bit Symbol Description 0 VIF31875 VIF frequency selection for global ATV application inclusive DVB-T; see [1] Register W11 is logical AND protected by bit W8[7]. Therefore it is required ...

Page 40

NXP Semiconductors 12. Characteristics 12.1 Analog TV signal processing Table 53. Characteristics see Table 24 P amb f = 32.875 MHz dB for L); IF ...

Page 41

NXP Semiconductors Table 53. Characteristics …continued see Table 24 P amb f = 32.875 MHz dB for L); IF input from 50 via broadband transformer ...

Page 42

NXP Semiconductors Table 53. Characteristics …continued see Table 24 P amb f = 32.875 MHz dB for L); IF input from 50 via broadband transformer ...

Page 43

NXP Semiconductors Table 53. Characteristics …continued see Table 24 P amb f = 32.875 MHz dB for L); IF input from 50 via broadband transformer ...

Page 44

NXP Semiconductors Table 53. Characteristics …continued see Table 24 P amb f = 32.875 MHz dB for L); IF input from 50 via broadband transformer ...

Page 45

NXP Semiconductors Table 53. Characteristics …continued see Table 24 P amb f = 32.875 MHz dB for L); IF input from 50 via broadband transformer ...

Page 46

NXP Semiconductors Table 53. Characteristics …continued see Table 24 P amb f = 32.875 MHz dB for L); IF input from 50 via broadband transformer ...

Page 47

NXP Semiconductors Table 53. Characteristics …continued see Table 24 P amb f = 32.875 MHz dB for L); IF input from 50 via broadband transformer ...

Page 48

NXP Semiconductors Table 53. Characteristics …continued see Table 24 P amb f = 32.875 MHz dB for L); IF input from 50 via broadband transformer ...

Page 49

NXP Semiconductors Table 53. Characteristics …continued see Table 24 P amb f = 32.875 MHz dB for L); IF input from 50 via broadband transformer ...

Page 50

NXP Semiconductors Table 53. Characteristics …continued see Table 24 P amb f = 32.875 MHz dB for L); IF input from 50 via broadband transformer ...

Page 51

NXP Semiconductors Table 53. Characteristics …continued see Table 24 P amb f = 32.875 MHz dB for L); IF input from 50 via broadband transformer ...

Page 52

NXP Semiconductors Table 53. Characteristics …continued see Table 24 P amb f = 32.875 MHz dB for L); IF input from 50 via broadband transformer ...

Page 53

NXP Semiconductors Table 53. Characteristics …continued see Table 24 P amb f = 32.875 MHz dB for L); IF input from 50 via broadband transformer ...

Page 54

NXP Semiconductors Table 53. Characteristics …continued see Table 24 P amb f = 32.875 MHz dB for L); IF input from 50 via broadband transformer ...

Page 55

NXP Semiconductors Table 53. Characteristics …continued see Table 24 P amb f = 32.875 MHz dB for L); IF input from 50 via broadband transformer ...

Page 56

NXP Semiconductors Table 53. Characteristics …continued see Table 24 P amb f = 32.875 MHz dB for L); IF input from 50 via broadband transformer ...

Page 57

NXP Semiconductors Table 53. Characteristics …continued see Table 24 P amb f = 32.875 MHz dB for L); IF input from 50 via broadband transformer ...

Page 58

NXP Semiconductors Table 53. Characteristics …continued see Table 24 P amb f = 32.875 MHz dB for L); IF input from 50 via broadband transformer ...

Page 59

NXP Semiconductors Table 53. Characteristics …continued see Table 24 P amb f = 32.875 MHz dB for L); IF input from 50 via broadband transformer ...

Page 60

NXP Semiconductors Table 53. Characteristics …continued see Table 24 P amb f = 32.875 MHz dB for L); IF input from 50 via broadband transformer ...

Page 61

NXP Semiconductors Table 53. Characteristics …continued see Table 24 P amb f = 32.875 MHz dB for L); IF input from 50 via broadband transformer ...

Page 62

NXP Semiconductors Table 53. Characteristics …continued see Table 24 P amb f = 32.875 MHz dB for L); IF input from 50 via broadband transformer ...

Page 63

NXP Semiconductors [ 100 kHz (damping factor d = 1.7; calculated with sync level within gain control range). Calculation of the VIF PLL filter by LF( 3dB) using the following formulae valid ...

Page 64

NXP Semiconductors [28] The tolerance of the reference frequency determines the accuracy of VIF AFC, RIF AFC, FM demodulator center frequency, maximum FM deviation, sound trap frequency, LIF band-pass cut-off frequency, as well as the accuracy of the synthesizer. [29] ...

Page 65

NXP Semiconductors Fig 11. Ripple rejection condition (1) VIF AGC. (2) TAGC; W10 = 00h. (3) TAGC; W10 = 10h. (4) TAGC; W10 = 1Fh. Fig 12. Typical VIF monitor and TAGC characteristic TDA9897_TDA9898_4 Product data sheet TDA9897; TDA9898 V ...

Page 66

NXP Semiconductors Fig 13. Typical tuner takeover point as a function of I (1) IF based TAGC (TOP2). Fig 14. Typical tuner takeover point as a function of resistor R TDA9897_TDA9898_4 Product data sheet 100 V i(IF) ( ...

Page 67

NXP Semiconductors 5 V AGC(FM) ( Fig 15. Typical FM AGC characteristic measured at pin MPP TDA9897_TDA9898_4 Product data sheet 001aaj593 5 V AGC(SIF) ( 100 120 ...

Page 68

NXP Semiconductors 250 (5) f AFC(VIF) (kHz) 150 150 250 36.375 36.875 2 (1) VIF AFC via I C-bus; accuracy is 1 digit. 2 (2) Bit AFCWIN via I C-bus (VCO is in 1.6 MHz window) for ...

Page 69

NXP Semiconductors Fig 19. RC network for measurement of analog AFC characteristic (1) B/G standard; weighted video S/N; using 50 % grey picture. (2) M/N standard; unweighted video S/N; using 50 IRE grey picture. Fig 20. Typical signal-to-noise ratio as ...

Page 70

NXP Semiconductors resp(f) (dB) (1) Minimum requirements upper limit. (2) Minimum requirements lower limit. (3) Typical trap amplitude frequency response. Fig 21. Typical amplitude frequency response for sound trap at M/N standard (including t d(grp) (ns) (1) Minimum requirements upper ...

Page 71

NXP Semiconductors resp(f) (dB) (1) Minimum requirements upper limit. (2) Minimum requirements lower limit. (3) Typical trap amplitude frequency response. Fig 23. Typical amplitude frequency response for sound trap at B/G standard t d(grp) (ns) (1) Minimum requirements upper limit ...

Page 72

NXP Semiconductors resp(f) (dB) (1) Minimum requirements upper limit. (2) Minimum requirements lower limit. (3) Typical trap amplitude frequency response. Fig 25. Typical amplitude frequency response for sound trap at I standard t d(grp) (ns) (1) Minimum requirements upper limit. ...

Page 73

NXP Semiconductors resp(f) (dB) (1) Minimum requirements upper limit. (2) Minimum requirements lower limit. (3) Typical trap amplitude frequency response. Fig 27. Typical amplitude frequency response for sound trap at D/K standard t d(grp) (ns) (1) Minimum requirements upper limit. ...

Page 74

NXP Semiconductors resp(f) (dB) (1) Minimum requirements upper limit. (2) Minimum requirements lower limit. (3) Typical trap amplitude frequency response. Fig 29. Typical amplitude frequency response for sound trap at L standard t d(grp) (ns) (1) Minimum requirements upper limit. ...

Page 75

NXP Semiconductors resp(f) (dB) (1) Center frequency. (2) Minimum upper cut-off frequency. (3) Minimum lower cut-off frequency. (4) Maximum upper cut-off frequency. (5) Maximum lower cut-off frequency. (6) Minimum upper stop-band attenuation. (7) Minimum lower stop-band attenuation. Fig 31. Typical ...

Page 76

NXP Semiconductors THD (%) Fig 33. Typical total harmonic distortion as a function of audio frequency at AM standard Fig 34. Unweighted FM audio S/N versus reference frequency input level using radio TDA9897_TDA9898_4 Product data sheet 2.0 1.5 1.0 0.5 ...

Page 77

NXP Semiconductors 120 antenna input level (dB V) 100 (1) Signal levels for 1 dB video output level using maximum RF gain and maximum IF gain. (2) Signal levels for +1 dB video output level ...

Page 78

NXP Semiconductors 12.2 Digital TV signal processing Table 56. Characteristics [ MHz system; see P amb (RMS MHz for low IF output of ...

Page 79

NXP Semiconductors Table 56. Characteristics …continued [ MHz system; see P amb (RMS MHz for low IF output of 5 MHz; IF input ...

Page 80

NXP Semiconductors Table 56. Characteristics …continued [ MHz system; see P amb (RMS MHz for low IF output of 5 MHz; IF input ...

Page 81

NXP Semiconductors Table 56. Characteristics …continued [ MHz system; see P amb (RMS MHz for low IF output of 5 MHz; IF input ...

Page 82

NXP Semiconductors Table 56. Characteristics …continued [ MHz system; see P amb (RMS MHz for low IF output of 5 MHz; IF input ...

Page 83

NXP Semiconductors Table 56. Characteristics …continued [ MHz system; see P amb (RMS MHz for low IF output of 5 MHz; IF input ...

Page 84

NXP Semiconductors Table 56. Characteristics …continued [ MHz system; see P amb (RMS MHz for low IF output of 5 MHz; IF input ...

Page 85

NXP Semiconductors (1) Direct IF, f (2) Low IF, f Fig 36. Maximum differential load figures at OUT1/OUT2 (1) Direct IF. (2) Low IF. (3) Noise level of measurement setup. Fig 37. Typical C/N ratio as a function of IF ...

Page 86

NXP Semiconductors (1) 0.25 V for W4[ Fig 38. Direct IF signal conditions for measurement of intermodulation at OUT2 (1) 0.25 V for W4[ Fig 39. Low IF signal conditions for measurement of intermodulation at OUT1 ...

Page 87

NXP Semiconductors (1) Channel bandwidth = 6 MHz. (2) Channel bandwidth = 7 MHz. (3) Channel bandwidth = 8 MHz. Fig 41. Detailed low IF amplitude and group delay pass-band tolerance scheme (1) Channel bandwidth = 6 MHz. (2) Channel ...

Page 88

NXP Semiconductors (1) Channel bandwidth = 6 MHz. (2) Channel bandwidth = 7 MHz. (3) Channel bandwidth = 8 MHz. Fig 43. Low IF amplitude pass-band tolerance scheme (1) 2.0 V (p-p) differential output voltage (LIF, W9[ W4[7] ...

Page 89

NXP Semiconductors Fig 45. Typical synthesizer loop filter voltage as function of synthesizer frequency (1) (2) (3) Fig 46. Typical synthesizer phase noise at carrier frequency plus f on LIF output versus TDA9897_TDA9898_4 Product data sheet 2.5 V LFSYN2 (V) ...

Page 90

NXP Semiconductors 13. Application information synthesizer downconverter (2) loop filter LFSYN2 C LFSYN2 n.c. C IFAGC (5) 470 nF ( MHz WINDOW C CTAGC SAW X3450L 100 nF 6 MHz WINDOW loop filter (1) Optional ...

Page 91

NXP Semiconductors synthesizer downconverter (1) loop filter LFSYN2 C LFSYN2 n.c. 12 SOUND 11 C IFAGC (4) SAW X3751L 470 MHz or 8 MHz WINDOW CTAGC 100 nF PORT2 ...

Page 92

NXP Semiconductors synthesizer downconverter (1) loop filter LFSYN2 C LFSYN2 n. SAW SIF X7550 4 n.c. 5 SAW 6 VIF M1980 NYQUIST SLOPE 7 C CTAGC 8 100 nF (5) 9 (5) ...

Page 93

NXP Semiconductors 4 MHz TDA9897 TDA9898 ( 4.7 k TDA9897 PORT1 12 TDA9898 (4a TDA9897 33 TDA9898 (5a) 220 R 30 TDA9897 R TDA9898 29 (7a) (1) Optional 4 MHz ...

Page 94

NXP Semiconductors 14. Test information synthesizer downconverter (4) loop filter LFSYN2 C LFSYN2 n. SIF/DIF IFAGC (6) 470 VIF/SIF/DIF ...

Page 95

NXP Semiconductors 15. Package outline LQFP48: plastic low profile quad flat package; 48 leads; body 1 pin 1 index DIMENSIONS (mm are the original ...

Page 96

NXP Semiconductors HVQFN48: plastic thermal enhanced very thin quad flat package; no leads; 48 terminals; body 0.85 mm terminal 1 index area terminal 1 48 index area DIMENSIONS (mm ...

Page 97

NXP Semiconductors 16. Soldering of SMD packages This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note AN10365 “Surface mount reflow soldering description” . 16.1 Introduction ...

Page 98

NXP Semiconductors 16.4 Reflow soldering Key characteristics in reflow soldering are: • Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see reducing the process window • Solder paste printing issues including ...

Page 99

NXP Semiconductors Fig 54. Temperature profiles for large and small components For further information on temperature profiles, refer to Application Note AN10365 “Surface mount reflow soldering description” . 17. Soldering of through-hole mount packages 17.1 Introduction to soldering through-hole mount ...

Page 100

NXP Semiconductors 17.4 Package related soldering information Table 60. Package CPGA, HCPGA DBS, DIP, HDIP, RDBS, SDIP, SIL [2] PMFP [1] For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board. [2] For ...

Page 101

NXP Semiconductors Table 61. Acronym RIF RSSI SAW SC SIF TAGC TOP VCO VIF VITS 19. Revision history Table 62. Revision history Document ID Release date TDA9897_TDA9898_4 20090525 • Modifications: Specification of features for V3 version TDA9897_TDA9898_3 20080111 TDA9897_TDA9898_2 20070411 ...

Page 102

NXP Semiconductors 20. Legal information 20.1 Data sheet status [1][2] Document status Product status Objective [short] data sheet Development Preliminary [short] data sheet Qualification Product [short] data sheet Production [1] Please consult the most recently issued document before initiating or ...

Page 103

NXP Semiconductors 22. Contents 1 General description . . . . . . . . . . . . . . . . . . . . . . 1 2 Features . . . . . . . . ...

Related keywords