S9S08DZ60F2MLF Freescale Semiconductor, S9S08DZ60F2MLF Datasheet - Page 87

no-image

S9S08DZ60F2MLF

Manufacturer Part Number
S9S08DZ60F2MLF
Description
8-bit Microcontrollers - MCU M74K MASK ONLY-AUTO
Manufacturer
Freescale Semiconductor
Datasheet

Specifications of S9S08DZ60F2MLF

Rohs
yes
Core
HCS08
Data Bus Width
8 bit
Maximum Clock Frequency
40 MHz
Program Memory Size
60 KB
Data Ram Size
4 K
On-chip Adc
Yes
Operating Supply Voltage
2.7 V to 5.5 V
Operating Temperature Range
- 40 C to + 125 C
Package / Case
LQFP-48
Mounting Style
SMD/SMT
Processor Series
MC9S08DZ60

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
S9S08DZ60F2MLF
Manufacturer:
FREESCALE
Quantity:
4 673
Part Number:
S9S08DZ60F2MLF
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
S9S08DZ60F2MLF
Manufacturer:
FREESCALE
Quantity:
4 673
Part Number:
S9S08DZ60F2MLF
Manufacturer:
FREESCALE
Quantity:
20 000
Part Number:
S9S08DZ60F2MLFR
Manufacturer:
NXP/恩智浦
Quantity:
20 000
Part Number:
S9S08DZ60F2MLFR
0
An output pin can be selected to have high output drive strength by setting the corresponding bit in the
drive strength select register (PTxDSn). When high drive is selected, a pin is capable of sourcing and
sinking greater current. Even though every I/O pin can be selected as high drive, the user must ensure that
the total current source and sink limits for the MCU are not exceeded. Drive strength selection is intended
to affect the DC behavior of I/O pins. However, the AC behavior is also affected. High drive allows a pin
to drive a greater load with the same switching speed as a low drive enabled pin into a smaller load.
Because of this, the EMC emissions may be affected by enabling pins as high drive.
6.3
Port A, port B, and port D pins can be configured as external interrupt inputs and as an external means of
waking the MCU from stop or wait low-power modes.
The block diagram for each port interrupt logic is shown
Writing to the PTxPSn bits in the port interrupt pin select register (PTxPS) independently enables or
disables each port pin. Each port can be configured as edge sensitive or edge and level sensitive based on
the PTxMOD bit in the port interrupt status and control register (PTxSC). Edge sensitivity can be software
programmed to be either falling or rising; the level can be either low or high. The polarity of the edge or
edge and level sensitivity is selected using the PTxESn bits in the port interrupt edge select register
(PTxES).
Synchronous logic is used to detect edges. Prior to detecting an edge, enabled port inputs must be at the
deasserted logic level. A falling edge is detected when an enabled port input signal is seen as a logic 1 (the
deasserted level) during one bus cycle and then a logic 0 (the asserted level) during the next cycle. A rising
edge is detected when the input signal is seen as a logic 0 during one bus cycle and then a logic 1 during
the next cycle.
6.3.1
A valid edge on an enabled port pin will set PTxIF in PTxSC. If PTxIE in PTxSC is set, an interrupt request
will be presented to the CPU. Clearing of PTxIF is accomplished by writing a 1 to PTxACK in PTxSC.
Freescale Semiconductor
PTxn
PTxn
PTxES0
PTxESn
Pin Interrupts
1
0
1
0
S
S
Edge Only Sensitivity
PTxPS0
PTxPSn
Figure 6-2. Port Interrupt Block Diagram
MC9S08DZ60 Series Data Sheet, Rev. 4
PTxMOD
V
DD
D
CK
CLR
Q
Figure
INTERRUPT FF
PORT
6-2.
RESET
PTxACK
STOP
Chapter 6 Parallel Input/Output Control
SYNCHRONIZER
STOP BYPASS
BUSCLK
PTxIE
PTxIF
PTx
INTERRUPT
REQUEST
87

Related parts for S9S08DZ60F2MLF