PIC18F2221-I/ML Microchip Technology, PIC18F2221-I/ML Datasheet - Page 81

IC PIC MCU FLASH 2KX16 28QFN

PIC18F2221-I/ML

Manufacturer Part Number
PIC18F2221-I/ML
Description
IC PIC MCU FLASH 2KX16 28QFN
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18F2221-I/ML

Core Size
8-Bit
Program Memory Size
4KB (2K x 16)
Core Processor
PIC
Speed
40MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number Of I /o
25
Program Memory Type
FLASH
Eeprom Size
256 x 8
Ram Size
512 x 8
Voltage - Supply (vcc/vdd)
4.2 V ~ 5.5 V
Data Converters
A/D 10x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-VQFN Exposed Pad, 28-HVQFN, 28-SQFN, 28-DHVQFN
Controller Family/series
PIC18
No. Of I/o's
25
Eeprom Memory Size
256Byte
Ram Memory Size
512Byte
Cpu Speed
40MHz
No. Of Timers
4
Package
28QFN EP
Device Core
PIC
Family Name
PIC18
Maximum Speed
40 MHz
Operating Supply Voltage
5 V
Data Bus Width
8 Bit
Number Of Programmable I/os
25
Interface Type
I2C/SPI/USART
On-chip Adc
10-chx10-bit
Number Of Timers
4
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
XLT28QFN4 - SOCKET TRANS ICE 28QFN W/CABLEAC164322 - MODULE SOCKET MPLAB PM3 28/44QFN
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F2221-I/ML
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
6.5
The minimum programming block is 4 words or 8 bytes.
Word or byte programming is not supported.
Table writes are used internally to load the holding
registers needed to program the Flash memory. There
are 8 holding registers used by the table writes for
programming.
Since the Table Latch (TABLAT) is only a single byte,
the TBLWT instruction may need to be executed 8 times
for each programming operation. All of the table write
operations will essentially be short writes because only
the holding registers are written. At the end of updating
the 8 holding registers, the EECON1 register must be
written to in order to start the programming operation with
a long write.
FIGURE 6-5:
6.5.1
The sequence of events for programming an internal
program memory location should be:
1.
2.
3.
4.
5.
6.
7.
8.
© 2007 Microchip Technology Inc.
TBLPTR = xxxxx0
Read 64 bytes into RAM.
Update data values in RAM as necessary.
Load Table Pointer register with address being
erased.
Execute the row erase procedure.
Load Table Pointer register with address of first
byte being written.
Write the 8 bytes into the holding registers.
Set the EECON1 register for the write operation:
• set EEPGD bit to point to program memory;
• clear the CFGS bit to access program memory;
• set WREN to enable byte writes.
Disable interrupts.
Writing to Flash Program Memory
FLASH PROGRAM MEMORY
WRITE SEQUENCE
Holding Register
TABLE WRITES TO FLASH PROGRAM MEMORY
8
TBLPTR = xxxxx1
Holding Register
8
Preliminary
Program Memory
TBLPTR = xxxxx2
Write Register
TABLAT
The long write is necessary for programming the
internal Flash. Instruction execution is halted while in a
long write cycle. The long write will be terminated by
the internal programming timer.
The EEPROM on-chip timer controls the write time.
The write/erase voltages are generated by an on-chip
charge pump, rated to operate over the voltage range
of the device.
9.
10. Write 0AAh to EECON2.
11. Set the WR bit. This will begin the write cycle.
12. The CPU will stall for duration of the write (about
13. Repeat from step 5 seven more times.
14. Re-enable interrupts.
15. Verify the memory (table read).
This procedure will require about 18 ms to update one
row of 64 bytes of memory. An example of the required
code is given in Example 6-3.
PIC18F4321 FAMILY
Note:
Note:
Holding Register
Write 55h to EECON2.
2 ms using internal timer).
The default value of the holding registers on
device Resets and after write operations is
FFh. A write of FFh to a holding register
does not modify that byte. This means that
individual bytes of program memory may be
modified, provided that the modification
does not attempt to change any bit from a
‘0’ to a ‘1’. When modifying individual bytes,
it is not necessary to load all 8 holding
registers before executing a write operation.
Before setting the WR bit, the Table
Pointer address needs to be within the
intended address range of the 8 bytes in
the holding register.
8
TBLPTR = xxxxx7
Holding Register
DS39689E-page 79
8

Related parts for PIC18F2221-I/ML