DSPIC30F6014A-20E/PT Microchip Technology, DSPIC30F6014A-20E/PT Datasheet - Page 155

no-image

DSPIC30F6014A-20E/PT

Manufacturer Part Number
DSPIC30F6014A-20E/PT
Description
IC DSPIC MCU/DSP 144K 80TQFP
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F6014A-20E/PT

Program Memory Type
FLASH
Program Memory Size
144KB (48K x 24)
Package / Case
80-TFQFP
Core Processor
dsPIC
Core Size
16-Bit
Speed
20 MIPS
Connectivity
CAN, I²C, SPI, UART/USART
Peripherals
AC'97, Brown-out Detect/Reset, I²S, LVD, POR, PWM, WDT
Number Of I /o
68
Eeprom Size
4K x 8
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 5.5 V
Data Converters
A/D 16x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Product
DSCs
Data Bus Width
16 bit
Processor Series
DSPIC30F
Core
dsPIC
Maximum Clock Frequency
20 MHz
Number Of Programmable I/os
68
Data Ram Size
8 KB
Maximum Operating Temperature
+ 125 C
Mounting Style
SMD/SMT
3rd Party Development Tools
52713-733, 52714-737, 53276-922, EWDSPIC
Development Tools By Supplier
PG164130, DV164035, DV244005, DV164005, PG164120, ICE4000, DM240002, DM330011
Minimum Operating Temperature
- 40 C
Package
80TQFP
Device Core
dsPIC
Family Name
dsPIC30
Maximum Speed
20 MHz
Operating Supply Voltage
3.3|5 V
Interface Type
CAN/I2C/SPI/UART
On-chip Adc
16-chx12-bit
Number Of Timers
5
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
DM300024 - KIT DEMO DSPICDEM 1.1XLT80PT3 - SOCKET TRAN ICE 80MQFP/TQFPAC164320 - MODULE SKT MPLAB PM3 80TQFPDM300004-2 - BOARD DEMO DSPICDEM.NET 2DM300004-1 - BOARD DEMO DSPICDEM.NET 1AC30F007 - MODULE SKT FOR DSPIC30F 80TQFP
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F6014A-20E/PT
Manufacturer:
MICROCHIP
Quantity:
12 000
Part Number:
DSPIC30F6014A-20E/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
20.4.1.1
The oscillator start-up circuitry is not linked to the POR
circuitry. Some crystal circuits (especially low frequency
crystals) will have a relatively long start-up time. There-
fore, one or more of the following conditions is possible
after the POR timer and the PWRT have expired:
• The oscillator circuit has not begun to oscillate.
• The Oscillator Start-up Timer has NOT expired (if
• The PLL has not achieved a LOCK (if PLL is
If the FSCM is enabled and one of the above conditions
is true, then a clock failure trap will occur. The device
will automatically switch to the FRC oscillator and the
user can switch to the desired crystal oscillator in the
trap ISR.
20.4.1.2
If the FSCM is disabled and the Power-up Timer
(PWRT) is also disabled, then the device will exit rapidly
from Reset on power-up. If the clock source is FRC,
LPRC, EXTRC or EC, it will be active immediately.
If the FSCM is disabled and the system clock has not
started, the device will be in a frozen state at the Reset
vector until the system clock starts. From the user’s
perspective, the device will appear to be in Reset until
a system clock is available.
20.4.2
The BOR (Brown-out Reset) module is based on an
internal voltage reference circuit. The main purpose of
the BOR module is to generate a device Reset when a
brown-out condition occurs. Brown-out conditions are
generally caused by glitches on the AC mains (i.e.,
missing portions of the AC cycle waveform due to bad
power transmission lines or voltage sags due to exces-
sive current draw when a large inductive load is turned
on).
The BOR module allows selection of one of the
following voltage trip points:
• 2.6V-2.71V
• 4.1V-4.4V
• 4.58V-4.73V
© 2011 Microchip Technology Inc.
a crystal oscillator is used).
used).
Note:
BOR: PROGRAMMABLE
BROWN-OUT RESET
The BOR voltage trip points indicated here
are nominal values provided for design
guidance only.
POR with Long Crystal Start-up Time
(with FSCM Enabled)
Operating without FSCM and PWRT
dsPIC30F6011A/6012A/6013A/6014A
A BOR will generate a Reset pulse which will reset the
device. The BOR will select the clock source, based on
the device Configuration bit values (FOS<2:0> and
FPR<4:0>). Furthermore, if an oscillator mode is
selected, the BOR will activate the Oscillator Start-up
Timer (OST). The system clock is held until OST
expires. If the PLL is used, then the clock will be held
until the LOCK bit (OSCCON<5>) is ‘1’.
Concurrently, the POR time-out (T
time-out (T
Reset is released. If T
is being used, then a nominal delay of T
is
(T
The BOR status bit (RCON<1>) will be set to indicate
that a BOR has occurred. The BOR circuit, if enabled,
will continue to operate while in Sleep or Idle modes
and will reset the device should V
threshold voltage.
FIGURE 20-6:
POR
Note:
Note 1: External Power-on Reset circuit is
applied.
+ T
2: R should be suitably chosen so as to
3: R1 should be suitably chosen so as to
FSCM
PWRT
Dedicated supervisory devices, such as
the MCP1XX and MCP8XX, may also be
used as an external Power-on Reset
circuit.
required only if the V
is too slow. The diode D helps discharge
the capacitor quickly when V
down.
make sure that the voltage drop across
R does not violate the device’s electrical
specification.
limit any current flowing into MCLR from
external capacitor C, in the event of
MCLR/V
trostatic Discharge (ESD) or Electrical
Overstress (EOS).
D
The
).
V
) will be applied before the internal
DD
R
C
total
PP
PWRT
EXTERNAL POWER-ON
RESET CIRCUIT (FOR
SLOW V
pin breakdown due to Elec-
R1
delay
= 0 and a crystal oscillator
DD
DD
DD
POR
dsPIC30F
in
DS70143E-page 155
MCLR
fall below the BOR
POWER-UP)
power-up slope
) and the PWRT
this
FSCM
DD
powers
case
= 100 μs
is

Related parts for DSPIC30F6014A-20E/PT