AD9396KSTZ-100 Analog Devices Inc, AD9396KSTZ-100 Datasheet - Page 33

no-image

AD9396KSTZ-100

Manufacturer Part Number
AD9396KSTZ-100
Description
IC INTERFACE 100MHZ DVI 100LQFP
Manufacturer
Analog Devices Inc
Datasheet

Specifications of AD9396KSTZ-100

Applications
Video
Interface
Analog, DVI
Voltage - Supply
3.15 V ~ 3.47 V
Package / Case
100-LQFP
Mounting Type
Surface Mount
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
0x1B—Bit[3] Clamp Disable
0 = internal clamp enabled. 1 = internal clamp disabled. The
power-up default is 0.
0x1B —Bits[2:1] Programmable Bandwidth
x0 = low bandwidth. x1 = high bandwidth. The power-up
default is 1.
0x1B—Bit[0] Hold Auto-Offset
0 = normal auto-offset operation. 1 = hold current offset value.
The power-up default is 0.
0x1C—Bit[7] Auto-Offset Enable
0 = manual offset. 1 = auto-offset using offset as target code.
The power-up default is 0.
0x1C—Bits[6:5] Auto-Offset Update Mode
00 = every clamp.
01 = every 16 clamps.
10 = every 64 clamps.
11 = every VSYNC.
The power-up default setting is 10.
0x1C—Bits[4:3] Difference Shift Amount
00 = 100% of difference used to calculate new offset.
01 = 50%.
10 = 25%.
11 = 12.5%.
The power-up default is 01.
0x1C—Bit[2] Auto-Jump Enable
0 = normal operation. 1 = if the code >15 codes off, the offset is
jumped to the predicted offset necessary to fix the >15 code
mismatch. The power-up default is 1.
0x1C—Bit[1] Post Filter Enable
The post filter reduces the update rate by 1/6 and requires that
all six updates recommend a change before changing the offset.
This prevents unwanted offset changes. 0 = disable post filter.
1 = enable post filter. The power-up default is 1.
0x1C—Bit[0] Toggle Filter Enable
The toggle filter looks for the offset to toggle back and forth and
holds it if triggered. This is to prevent toggling in case of
missing codes in the PGA. 1 = toggle filter on. 0 = toggle filter
off. The power-up default is 0.
0x1D—Bits[7:0] Slew Limit
Limits the amount the offset can change in a single update. The
power-up default is 0x08.
0x1E—Bits[7:0] Sync Filter Lock Threshold
This 8-bit register is programmed to set the number
of valid HSYNCs needed to lock the sync filter. This ensures
that a consistent, stable HSYNC is present before attempting to
filter. The power-up default setting is 32d.
Rev. 0 | Page 33 of 48
0x1F—Bits[7:0] Sync Filter Unlock Threshold
This 8-bit register is programmed to set the number of missing
or invalid HSYNCs needed to unlock the sync filter. This
disables the filter operation when there is no longer a stable
HSYNC signal. The power-up default setting is 50d.
0x20—Bits[7:0] Sync Filter Window Width
This 8-bit register sets the distance in 40 MHz clock periods
(25 ns), which is the allowed distance for HSYNC pulses before
and after the expected HSYNC edge. This is the heart of the
filter in that it only looks for HSYNC pulses at a given time
(plus or minus this window) and then ignores extraneous
equalization pulses that disrupt accurate PLL operation. The
power-up default setting is 10d, or 200 ns on either side of the
expected HSYNC.
0x21—Bit[7] Sync Processing Filter Enable
This bit selects which HSYNC is used for the sync processing
functions of internal coast, H/V count, field detection, and
VSYNC duration counts. A clean HSYNC is fundamental to
accurate processing of the sync. 0 = sync processing uses raw
HSYNC or SOG. 1 = sync processing uses regenerated HSYNC
from sync filter. The power-up default setting is 1.
0x21—Bit[6] PLL Sync Filter Enable
This bit selects which signal the PLL uses. It can select between
raw HSYNC or SOG, or filtered versions. The filtering of the
HSYNC and SOG can eliminate nearly all extraneous
transitions which have traditionally caused PLL disruption. 0 =
PLL uses raw HSYNC or SOG inputs. 1 = PLL uses filtered
HSYNC or SOG inputs. The power-up default setting is 0.
0x21—Bit[5] VSYNC Filter Enable
The purpose of the VSYNC filter is to guarantee the position of
the VSYNC edge with respect to the HSYNC edge and to
generate a field signal. The filter works by examining the
placement of VSYNC and regenerating a correctly placed
VSYNC one line later. The VSYNC is first checked to see
whether it occurs in the Field 0 position or the Field 1 position.
This is done by checking the leading edge position against the
sync separator threshold and the HSYNC position. The HSYNC
width is divided into four quadrants with Quadrant 1 starting at
the HSYNC leading edge plus a sync separator threshold. If the
VSYNC leading edge occurs in Quadrant 1 or Quadrant 4, the
field is set to 0 and the output VSYNC is placed coincident with
the HSYNC leading edge. If the VSYNC leading edge occurs in
Quadrant 2 or Quadrant 3, the field is set to 1 and the output
VSYNC leading edge is placed in the center of the line. In this
way, the VSYNC filter creates a predictable relative position
between HSYNC and VSYNC edges at the output.
AD9396

Related parts for AD9396KSTZ-100