PIC16F74-I/P Microchip Technology, PIC16F74-I/P Datasheet - Page 69

IC MCU FLASH 4KX14 A/D 40DIP

PIC16F74-I/P

Manufacturer Part Number
PIC16F74-I/P
Description
IC MCU FLASH 4KX14 A/D 40DIP
Manufacturer
Microchip Technology
Series
PIC® 16Fr

Specifications of PIC16F74-I/P

Core Size
8-Bit
Program Memory Size
7KB (4K x 14)
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Core Processor
PIC
Speed
20MHz
Connectivity
I²C, SPI, UART/USART
Number Of I /o
33
Program Memory Type
FLASH
Ram Size
192 x 8
Voltage - Supply (vcc/vdd)
4 V ~ 5.5 V
Data Converters
A/D 8x8b
Oscillator Type
External
Operating Temperature
-40°C ~ 85°C
Package / Case
40-DIP (0.600", 15.24mm)
Controller Family/series
PIC16F
No. Of I/o's
33
Ram Memory Size
192Byte
Cpu Speed
20MHz
No. Of Timers
3
Package
40PDIP
Device Core
PIC
Family Name
PIC16
Maximum Speed
20 MHz
Operating Supply Voltage
5 V
Data Bus Width
8 Bit
Number Of Programmable I/os
33
Interface Type
I2C/SPI/USART
On-chip Adc
8-chx8-bit
Number Of Timers
3
Processor Series
PIC16F
Core
PIC
Data Ram Size
192 B
Maximum Clock Frequency
20 MHz
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
52715-96, 52716-328, 52717-734
Development Tools By Supplier
ICE2000, DM163022
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
444-1001 - DEMO BOARD FOR PICMICRO MCU
Eeprom Size
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC16F74-I/P
Manufacturer:
MAXIM
Quantity:
101
Part Number:
PIC16F74-I/P
Manufacturer:
MICROCHIP
Quantity:
50
Part Number:
PIC16F74-I/P
Quantity:
2 143
Part Number:
PIC16F74-I/P
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
PIC16F74-I/P
0
Company:
Part Number:
PIC16F74-I/P
Quantity:
2 400
Part Number:
PIC16F74-I/PT
Manufacturer:
MIC
Quantity:
50
Part Number:
PIC16F74-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
PIC16F74-I/PT
0
FIGURE 9-6:
9.3.1.3
When the R/W bit of the incoming address byte is set
and an address match occurs, the R/W bit of the
SSPSTAT register is set. The received address is
loaded into the SSPBUF register. The ACK pulse will
be sent on the ninth bit, and pin RC3/SCK/SCL is held
low. The transmit data must be loaded into the
SSPBUF register, which also loads the SSPSR regis-
ter. Then, pin RC3/SCK/SCL should be enabled by set-
ting bit CKP (SSPCON<4>). The master must monitor
the SCL pin prior to asserting another clock pulse. The
slave devices may be holding off the master by stretch-
ing the clock. The eight data bits are shifted out on the
falling edge of the SCL input. This ensures that the
SDA signal is valid during the SCL high time (Figure 9-7).
FIGURE 9-7:
 2002 Microchip Technology Inc.
SDA
SCL
SSPIF (PIR1<3>)
BF (SSPSTAT<0>)
CKP (SSPCON<4>)
SDA
SCL
SSPIF (PIR1<3>)
BF (SSPSTAT<0>)
SSPOV (SSPCON<6>)
S
S
A7 A6 A5 A4 A3 A2 A1
1
Transmission
A7
2
1
Data in
sampled
Receiving Address
3
A6
2
I
I
4
2
2
C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)
C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)
A5
Receiving Address
3
5
A4
4
6
7
A3
R/W=0
5
8
A2
6
ACK
9
A1
7
D7
1
R/W = 1
D6
2
8
SSPBUF register is read
Receiving Data
D5
3
Cleared in software
9
ACK
D4
Bit SSPOV is set because the SSPBUF register is still full.
responds to SSPIF
4
SCL held low
while CPU
D3
5
D2
6
An SSP interrupt is generated for each data transfer
byte. Flag bit SSPIF must be cleared in software, and
the SSPSTAT register is used to determine the status
of the byte. Flag bit SSPIF is set on the falling edge of
the ninth clock pulse.
As a slave-transmitter, the ACK pulse from the master-
receiver is latched on the rising edge of the ninth SCL
input pulse. If the SDA line was high (not ACK), then
the data transfer is complete. When the ACK is latched
by the slave, the slave logic is reset (resets SSPSTAT
register) and the slave then monitors for another occur-
rence of the START bit. If the SDA line was low (ACK),
the transmit data must be loaded into the SSPBUF reg-
ister, which also loads the SSPSR register. Then pin
RC3/SCK/SCL should be enabled by setting bit CKP.
D1
7
D7
D0
1
SSPBUF is written in software
8
ACK
9
D6
2
Cleared in software
Set bit after writing to SSPBUF
(the SSPBUF must be written to
before the CKP bit can be set)
D7
1
D5
3
D6
2
D4
4
D5
Receiving Data
3
Transmitting Data
D3
D4
4
5
ACK is not sent.
D3
5
D2
6
PIC16F7X
D2
6
From SSP Interrupt
Service Routine
D1
7
D1
7
D0
8
D0
DS30325B-page 67
8
ACK
ACK
9
9
Bus Master
terminates
transfer
P
P

Related parts for PIC16F74-I/P