ATMEGA64L-8AU Atmel, ATMEGA64L-8AU Datasheet - Page 238

IC AVR MCU 64K 8MHZ 3V 64TQFP

ATMEGA64L-8AU

Manufacturer Part Number
ATMEGA64L-8AU
Description
IC AVR MCU 64K 8MHZ 3V 64TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA64L-8AU

Core Processor
AVR
Core Size
8-Bit
Speed
8MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
64KB (32K x 16)
Program Memory Type
FLASH
Eeprom Size
2K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
Package
64TQFP
Device Core
AVR
Family Name
ATmega
Maximum Speed
8 MHz
Operating Supply Voltage
2.5|3.3|5 V
Data Bus Width
8 Bit
Number Of Programmable I/os
53
Interface Type
JTAG/SPI/TWI/USART
On-chip Adc
8-chx10-bit
Number Of Timers
4
Processor Series
ATMEGA64x
Core
AVR8
Data Ram Size
4 KB
Maximum Clock Frequency
8 MHz
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Minimum Operating Temperature
- 40 C
Cpu Family
ATmega
Device Core Size
8b
Frequency (max)
8MHz
Total Internal Ram Size
4KB
# I/os (max)
53
Number Of Timers - General Purpose
4
Operating Supply Voltage (typ)
2.5/3.3/5V
Operating Supply Voltage (max)
5.5/5.8V
Operating Supply Voltage (min)
2.4/2.7V
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
64
Package Type
TQFP
Controller Family/series
AVR MEGA
No. Of I/o's
53
Eeprom Memory Size
2KB
Ram Memory Size
4KB
Cpu Speed
8MHz
Rohs Compliant
Yes
For Use With
ATSTK600-TQFP64 - STK600 SOCKET/ADAPTER 64-TQFPATSTK600-TQFP32 - STK600 SOCKET/ADAPTER 32-TQFP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAG770-1005 - ISP 4PORT FOR ATMEL AVR MCU JTAG770-1004 - ISP 4PORT FOR ATMEL AVR MCU SPIATAVRISP2 - PROGRAMMER AVR IN SYSTEMATJTAGICE2 - AVR ON-CHIP D-BUG SYSTEMATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA64L-8AU
Manufacturer:
ATMEL
Quantity:
4 000
Part Number:
ATMEGA64L-8AU
Manufacturer:
ATMEL
Quantity:
451
Part Number:
ATMEGA64L-8AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA64L-8AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA64L-8AUR
Manufacturer:
Atmel
Quantity:
10 000
Analog Input Circuitry
2490Q–AVR–06/10
Noise Reduction and Idle mode. To make use of this feature, the following procedure should be
used:
Note that the ADC will not be automatically turned off when entering other sleep modes than Idle
mode and ADC Noise Reduction mode. The user is advised to write zero to ADEN before enter-
ing such sleep modes to avoid excessive power consumption. If the ADC is enabled in such
sleep modes and the user wants to perform differential conversions, the user is advised to
switch the ADC off and on after waking up from sleep to prompt an extended conversion to get a
valid result.
The analog input circuitry for single ended channels is illustrated in Figure 115. An analog
source applied to ADCn is subjected to the pin capacitance and input leakage of that pin, regard-
less of whether that channel is selected as input for the ADC. When the channel is selected, the
source must drive the S/H capacitor through the series resistance (combined resistance in the
input path).
The ADC is optimized for analog signals with an output impedance of approximately 10 kΩ or
less. If such a source is used, the sampling time will be negligible. If a source with higher imped-
ance is used, the sampling time will depend on how long time the source needs to charge the
S/H capacitor, with can vary widely. The user is recommended to only use low impedant sources
with slowly varying signals, since this minimizes the required charge transfer to the S/H
capacitor.
If differential gain channels are used, the input circuitry looks somewhat different, although
source impedances of a few hundred kΩ or less is recommended.
Signal components higher than the Nyquist frequency (f
kind of channels, to avoid distortion from unpredictable signal convolution. The user is advised
to remove high frequency components with a low-pass filter before applying the signals as
inputs to the ADC.
Figure 115. Analog Input Circuitry
1. Make sure that the ADC is enabled and is not busy converting. Single Conversion
2. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a conversion
3. If no other interrupts occur before the ADC conversion completes, the ADC interrupt
mode must be selected and the ADC conversion complete interrupt must be
enabled.
once the CPU has been halted.
will wake up the CPU and execute the ADC Conversion Complete interrupt routine. If
another interrupt wakes up the CPU before the ADC conversion is complete, that
interrupt will be executed, and an ADC Conversion Complete interrupt request will be
generated when the ADC conversion completes. The CPU will remain in Active mode
until a new sleep command is executed.
ADCn
I
IH
I
IL
1..100 kΩ
ADC
/2) should not be present for either
C
S/H
= 14 pF
ATmega64(L)
V
CC
/2
238

Related parts for ATMEGA64L-8AU