DSPIC30F5011-20I/PTG Microchip Technology, DSPIC30F5011-20I/PTG Datasheet - Page 109

no-image

DSPIC30F5011-20I/PTG

Manufacturer Part Number
DSPIC30F5011-20I/PTG
Description
IC, DSC, 16BIT, 66KB, 40MHZ 5.5V TQFP-64
Manufacturer
Microchip Technology
Series
DsPIC30Fr
Datasheet

Specifications of DSPIC30F5011-20I/PTG

Core Frequency
40MHz
Core Supply Voltage
5.5V
Embedded Interface Type
CAN, I2C, SPI, UART
No. Of I/o's
52
Flash Memory Size
66KB
Supply Voltage Range
2.5V To 5.5V
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
17.0
17.1
The Controller Area Network (CAN) module is a serial
interface, useful for communicating with other CAN
modules
interface/protocol
communications within noisy environments.
The CAN module is a communication controller
implementing the CAN 2.0 A/B protocol, as defined in
the BOSCH specification. The module will support
CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B
Active versions of the protocol. The module implementa-
tion is a full CAN system. The CAN specification is not
covered within this data sheet. The reader may refer to
the BOSCH CAN specification for further details.
The module features are as follows:
• Implementation of the CAN protocol CAN 1.2,
• Standard and extended data frames
• 0-8 bytes data length
• Programmable bit rate up to 1 Mbps
• Support for remote frames
• Double-buffered receiver with two prioritized
• 6 full (standard/extended identifier) acceptance
• 2 full acceptance filter masks, one each
• Three transmit buffers with application specified
• Programmable wake-up functionality with
• Programmable Loopback mode supports self-test
• Signaling via interrupt capabilities for all CAN
• Programmable clock source
• Programmable link to Input Capture module (IC2,
• Low-power Sleep and Idle mode
© 2008 Microchip Technology Inc.
Note:
CAN 2.0A and CAN 2.0B
received message storage buffers (each buffer
may contain up to 8 bytes of data)
filters, 2 associated with the high priority receive
buffer and 4 associated with the low priority
receive buffer
associated with the high and low priority receive
buffers
prioritization and abort capability (each buffer may
contain up to 8 bytes of data)
integrated low-pass filter
operation
receiver and transmitter error states
for both CAN1 and CAN2) for time-stamping and
network synchronization
CAN MODULE
Overview
This data sheet summarizes features of
this group of dsPIC30F devices and is not
intended to be a complete reference
source. For more information on the CPU,
peripherals, register descriptions and
general device functionality, refer to the
“dsPIC30F Family Reference Manual”
(DS70046).
or
microcontroller
was
designed
devices.
to
allow
This
The CAN bus module consists of a protocol engine and
message buffering/control. The CAN protocol engine
handles all functions for receiving and transmitting
messages on the CAN bus. Messages are transmitted
by first loading the appropriate data registers. Status
and errors can be checked by reading the appropriate
registers. Any message detected on the CAN bus is
checked for errors and then matched against filters to
see if it should be received and stored in one of the
receive registers.
17.2
The CAN module transmits various types of frames
which include data messages or remote transmission
requests initiated by the user, as other frames that are
automatically generated for control purposes. The
following frame types are supported:
• Standard Data Frame:
• Extended Data Frame:
• Remote Frame:
• Error Frame:
• Overload Frame:
• Interframe Space:
A standard data frame is generated by a node
when the node wishes to transmit data. It includes
an 11-bit standard identifier (SID), but not an 18-bit
extended identifier (EID).
An extended data frame is similar to a standard
data frame but includes an extended identifier as
well.
It is possible for a destination node to request the
data from the source. For this purpose, the
destination node sends a remote frame with an
identifier that matches the identifier of the required
data frame. The appropriate data source node will
then send a data frame as a response to this
remote request.
An error frame is generated by any node that
detects a bus error. An error frame consists of 2
fields: an error flag field and an error delimiter
field.
An overload frame can be generated by a node as
a result of 2 conditions. First, the node detects a
dominant bit during interframe space which is an
illegal
conditions, the node is not yet able to start
reception of the next message. A node may
generate a maximum of 2 sequential overload
frames to delay the start of the next message.
Interframe space separates a proceeding frame
(of whatever type) from a following data or remote
frame.
dsPIC30F5011/5013
Frame Types
condition.
Second,
due
DS70116H-page 109
to
internal

Related parts for DSPIC30F5011-20I/PTG